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The lattice thermal conductivities of Mg,Ge and Mg,Si have been analysed in the
entire temperature range 2— 1000 K in the frame of a new expression for the phonon-
phonon scattering relaxation rate proposed by Dubey as

T = (By1 + Buy,e —00Ty 5(e) T™ID (Bnu 1+ Buune —01aTy 5(e) T

based on the Guthrie classification of the phonon-phonon scattering events, and a very
good agreement has been obtained between the calculated and experimental values of
the lattice thermal conductivity for both samples in the entire temperature range of the
study. The separate percentage contributions due to three-phonon normal and umklapp
processes towards the three-phonon scattering relaxation rate have also been studied.
The role of the four-phonon processes has been included in the present analysis.

The lattice thermal conductivities of insulators and semiconductors have been
studied by a number of workers [1—10] and it is well established that phonon-
phonon scattering plays a very important role in the analysis of the lattice thermal
conductivity of a sample. The three-phonon scattering processes dominate over
other processes at high temperatures. At the same time, these processes are not
negligibly small at Jow temperatures and play an important role in the vicinity
of the conductivity maxima. However, due to the complex structure of the Brillouin
zone and the strong temperature-dependence of the phonon distribution function,
the three-phonon scattering relaxation rate involves a complicated dependence on
the phonon frequency as well as on the temperature. As a result, even at present
we lack an exact analytical expression for this. For practical purposes, there is a
need to express the three-phonon scattering relaxation rate by simple relations as
a function of the phonon frequency and temperature. Several workers [1—7,
11—14] studied the phonon-phonon scattering processes by dividing them into
groups: normal processes (N-processes), in which momentum is conserved, and
umklapp processes (U-processes), in which momentum is not conserved, and they
expressed the three-phonon scattering relaxation rates 3,  and 13,  due to
N- and U-processes, respectively, as simple functions of the phonon frequency
and temperature, as reporied in Table 1. The expressions in Table 1 have been
used by a number of workers [15—20] to analyse the lattice thermal conductiv-
ities of the different samples in the frame of the combined scattering relaxation
rates (see Table 2) at high as well as at low temperatures, and it is reported that

J. Thermal Anal. 24, 1982



234 AWAD, DUBEY: ANALYSIS OF THERMAL CONDUCTIVITY

Table 1

The three-phonon scattering relaxation rates. In these expressions, B’s are constants and are

known as the scattering strenghts of the respective processes, « is constant, ¢ is the Debye

temperature and gpy is the zone boundary of the first Brillovin zone. Suffixes T and L stand

for transverse and longitudinal phonons, respectively, and suffixes N and U refer to three-
phonon normal and umklapp processes, respectively

Three-phonon processes 1:3‘;,%l Relaxation rate
Normal processes [11] (N-processes): T N
Transverse: T = BroT!
Longitudinal: TN = BLo?T® at low temporature
Transverse: i = BroT .
} at high temperature
Longitudinal: T} = BLe®T
Umklapp processes (U-processes): Tihu
Klemens [13] (longitudinal): Yy = BywTPe ¥ T } | t
, at low temperature
Klemens [12] (transverse): Tty = By T?e~0"T
Holiand [2] (transverse): v5Yy = Br,y@¥Sinh(ho/KeT) 1/2dmex — Gmex
Ty =0 0 — 1/2qu
Callaway [1]: 17! = Byw?T? 0 — Fax
=1 = Byw?T at high temperature
Joshi and Verma [3] (transverse): Toh, 1 = BroT™ 0 — Gimax
(longitudinal): Tiph,L = BLo*T™ 0 — Gmax
() _
SDV [4, 5] (transverse): T = Br T T =0T 0 — Gmax
M _
(longitudinal): T L = BL,IcoszL»I e 0T
+ BL,nszmL' D~ 0 — Gonax
Dubey and Misho [6] (transverse): bt = By + Broe @ HoT™ 0 — gua
(longitudinal): Thhy = (Bin  + Brue @ No’T™ 0 — g
my (T
Dubey [33] (transverse): thhr = (Brn1 + Brue~®MoT I
0 — g
my (T
( Present work) (longitudinal): b = B + Brua e~ 0Ty 2T LK
(D
+ (B + BLU,ne_@/“T)WZTmL’H
0 — Gmax

these expressions give a good response to the experimental data on the lattice
thermal conductivity.

The three-phonon scattering relaxation rates were further studied by Guthrie
[31, 32] by dividing the phonon-phonon scattering events into two classes: class T
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Table 2

The combined scattering relaxation rates. In these expressions, @, and w, are the transverse
phonon frequencies at 1/2gp,y and gy, Tespectively, o, and w, are the same for longitudipal
phonons, wp is the Debye frequency, 73! and 75! are the boundary and point-defect scattering
relaxation rate, respectively, and the other terms have the same meanings as stated in Table 1

1

Combined scattering relaxation rates z_~ Frequency range

Callaway [1] ol =15l + 13! + (B, + By)w?T? 0 — wp
Holland [2] ot =15 + 5! + By T* 0 — w,
Tor = 15! + 15! + Bryw¥Sink (ho/KyT) 0 — 0y
71, = 15" + mn' + BLo?T? 0— a,
Joshi and Verma [3] =i =r15'+ 13' + BroT™ 0 —w,
oL =75+ 7' + BLo'T" 0 —

(m =1, 2,3 or4, depending on the temperature range)

T,
SDV model [4, 5] Toh = 75! + 15! + By o TVTIY 00T 0 — w,
ol =15+ T3 + BL’IszmL,I(T)e—@ImT
+ By po? T"LUDe—6/aT 0 — w,
Dubey and Misho [6] 751 = 75! + 753! + (Bry + Brye ¥ Do T™ 0 — w,y
ot ="+ 75 + (Biy + Biye~ o™ 0— w,
m =1, 2,3 or 4 for transverse phonons, depending on
temperature range, and
m =1, 2 or 3 for longitudinal phonons, depending on

temperature range.

My, iT

Dubey [33] =1+ ' + B + Bruae ¥ DoT 0 — w,
(Present Work) el =7+ '+ B+ Buugen ot
+ (Bynu + BLU,IIe_-@/“T) w? TP 0—aw,

events, in which the carrier phonon is annihilated by combination, and class II
events, in which the carrier phonon is annihilated by splitting. According to
Guthrie [31], the scattering relaxation rate due to each class of events is of the form

5oh o€ GOAT) )

where f(T) = T™D, m(T) is a continuous function of the temperature T, and
g(w) is the frequency-dependence of the scattering relaxation rate. Recently,
considering the role of the three-phonon N- and U-processes, and following the
Guthrie classification of the phonon-phonon scattering events, Dubey [33] studied
the lattice thermal conductivity of a sample by proposing a new expression for
the three-phonon scattering relaxation rate as
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Tiph = (Bn,1 + BU,LE_GI"T)H(CU) ™
+ (Ba,ur + By, e """ g(w) T (2)

The terms are explained in the following section.

The aim of the present work is to analyse the lattice thermal conductivities of
Mg,Ge and Mg,Si in the entire temperature range 2~ 1000 K in the frame of the
expression for the three-phonon scattering relaxation rate recently proposed by
Dubey. The total lattice thermal conductivities of both samples Mg,Ge and Mg,Si
have been calculated by estimating the contributions due to transverse and longi-
tudinal phonons separately. The separate percentage contributions due to trans-
verse and longitudinal phonons towards the total lattice thermal conductivity
have been reported for both samples in the entire temperature range of the study.
The variation of the temperature exponent m(T') used in the present analysis with
temperature has been studied for transverse and longitudinal phonons for both
Mg,Ge and Mg,Si in the entire temperature range 2— 1000 K. The percentage
contributions due to three-phonon N-processes and U-processes towards the
phonon-phonon scattering relaxation have been estimated for transverse and
longitudinal phonons, to see their roles in the analysis of the lattice thermal con-
ductivity of a sample. To study the importance of the phonon-phonon scattering
events in more detail, the percentage contribution of the three-phonon scattering
relaxation rate towards the combined scattering relaxation rate has been calculated

1 1 3
for the different values of the phonon frequency w = T Opax» 3 o

Wpax TOr transverse and for longitudinal phonons for both samples, Mg,Ge and
Mg,Si. To see the goodness of the present analysis, 2 comparative study of the
present analysis with the earlier studies is reported. The contribution of the four-
phonon scattering processes has been included to estimate the lattice thermal
conductivity at high temperatures.

o, and

max® Z max

A short feature of the Dubey approach to the lattice thermal conductivity

There can be many phonon scattering processes that lead to the lattice thermal
resistivity of a sample. The phonon-phonon scattering processes dominate over
other processes at high temperatures and these processes can not be ignored at
low temperatures either. They play an important role even in the vicinity of the
conductivity maxima. It is difficult to express the three-phonon scattering relaxa-
tion rate T3, as a simple relation, due to the complicated structure of the Brillouin
zone, as well as the strong temperature-dependence of the phonon distribution
function. To analyse the experimental data on the lattice thermal conductivity, a
number of workers [1 ~7, 11—~14] studied the phonon-phonon scattering proc-
esses and tried to express the three-phonon scattering relaxation rate 7s, in the
form of a simple relation as a function of the phonon frequency @ and the tem-
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perature T for the three-phonon N- and U-processes as reported in Table 1. From
Table 1, it is clear that the frequency-dependence of 735, is @ for transverse
phonons and o? for longitudinal phonons. It is also clear that the expression for
T3n for transverse phonons is different from that for longitudinal phonons.
It should be noted that the Callaway [1] expression is an exception to this, due to
the fact that he could not make any distinction between transverse and longitudinal
phonons. From this Table, it can also be seen that the expression for 3, for
U-processes consists of an exponential factor. Using the expressions reported in
Table 1, the lattice thermal conductivities of a number of samples have been
studied [15—~30] at low and at high temperatures in the frame of the combined
scattering relaxation rates as given in Table 2.

As stated earlier, according to Guthrie [31], the phonon-phonon scattering
relaxation rate can be studied by dividing the phonon-phonon scattering events
into two classes: class I events, in which the carrier phonon is annihilated by
combination, and class Il events, in which the annihilation of the carrier phonon
takes place by splitting; the scattering relaxation rates for each class of events
are the form

Tiph € g(@) T™D A3)

where g(w) is the frequency-dependence of 733, and is the same as reported by
Herring [11], i.e. g(w) = o for transverse phonons and w® for longitudinal pho-
nons. The temperature exponent m(T) is a continuous function of temperature T.
Guthrie [31, 32] commented on the use of the Herring [11] relations 75 oc T*
and 35, oc T° for transverse and longitudinal phonons, respectively, at high tem-
peratures, and suggested that these relations are valid only at low temperatures.
It is needed to be stated that Guthrie [31] could not give any analytical expression
for the exact value of m(T), except that he reported the extreme values of m(T) as:
For class I events:

[T Jmax = Xinax [2(€"™* — 171 + 1.0] — 1.0 @

(1) i = 1.0 &)
For class II events:

[1(T) ) gpax = 1.0 (6)

(1) S = K (€% — 1) 0550 )

ho .. .
where X, = I‘;—aTTL » b is the Planck constant divided by 2z, Ky is the
B

Boltzmann constant, @, is the phonon frequency at the zone boundary of the
first Brillouin zone, and suffixes 7 and L stand for transverse and longitudinal
phonons, Tespectively. At the same time, he pointed out that the numerical value
of m(T) for class I events should not exceed 4 for transverse phonons and 3 for
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longitudinal phonons. Thus, there still remains a large uncertainty in the assign-
ment of an exact value of m(T).

In the lack of an expression for the exact value of m(T’), to minimise the un-
certainty, Dubey [33] suggested the use of the average value of its maximum and
minimum values, which is more realistic compared to the use of the maximum
value as suggested by Joshi and Verma [3]. Thus, the expression for m(T) used
by Dubey [33] can be expressed as

m(T) = Xpan (€™ — D7+ 0.5X . (8)
for class I events, and

mIL(T) = 0.5 + 0.5X £0-9%max (exmax _ 1)—1 (9)

max

for class II events.

As stated earlier, the phonon-phonon scattering processes can be divided into
two processes, N-processes and U-processes, and the scattering relaxation rates
due to these processes are of the form [11—-13]

Tomn,N = Bug(@) T™D (10)
for three-phonon N-processes [11] and
Tph,u = Buglw) T"Pe 1 (1)

for three-phonon U-processes [12, 13], where By and By are the scattering
strengths due to N and U-processes, respectively, 0 is the Debye temperature of
the sample, « is a constant, and suffixes N and U refer to N and U-processes,
respectively. In view of Egs (10) and (11), Dubey [33] expressed the scattering
relaxation rates 755 ; for class I events and 75, p; for class II events as

Tt = By + By 1 %T) g(w) T™D (12)
Tonar = Brx,n + Bu,n e~ g(w) TP (13)

Dubey [33] used the same frequency-dependence for N and U-processes due
to the fact that the frequency-dependence g(w) depends only on the polarisation
branches. At the same time, the same value of m(T) is assigned to both N and
U-processes due to the fact that Guthrie [31] obtained the same value of m(T)
for both processes.

The Guthrie [31] classification of the phonon-phonon scattering events into
class T and class II events leads to the participation of transverse phonons in
class I events only, but the participation of longitudinal phonons in both class I
and class II events. As a result, Dubey [33] proposed a new expression for rgplhT,
for transverse phonons

Ta_plh,T = (Brn1 + BTU,Ie—B/aT)meT’I(T) (14)
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because the contribution due to class II events is not possible for 13}, 1 for trans-
verse phonons. Similarly, the expression for 73, ¢ for longitudinal phonons is
given by [33]

Toh, . = (Bun,1 + Brut =0Ty @? LD

+ (Buw, i + Bryue™ ) o TR0 (15)

Besides the three-phonon scattering processes as discussed above, four-phonon
scattering also plays an important role in the estimation of the lattice thermal
conductivity at high temperatures. It was Pomeranchuk [34—36], first of all,
who obtained a simple expression for the four-phonon scattering relaxation
rate Tz}, as

Tiph = B T” (16)

where By is the four-phonon scattering strength. The above expression for i,
has been used by a number of workers [3, 7, 10] to analyse the lattice thermal
conductivities of different samples and it is found that it gives a good response
to the experimental data.

The scattering of phonons due to point-defects, isotopes, etc. are most important
scattering processes at temperatures near the conductivity maxima. At these tem-
peratures, the high-frequency phonons are not excited to a large extent. When
the wavelength of phonons is large compared to an imperfection in the crystal,
the scattering can be treated in the manner of Lord Rayleigh [37]. Using the
perturbation theory, Klemens [12] obtained an expression for the point-defect
scattermg relaxation rate 7' for low-frequency phonons: this can be expressed
as 15, = Aw®, where A is the point-defect scattering strength, given by

,
A= G 2|1

where V is the atomic volume, f; is the fraction of the i™ impure atom having
mass my, m is the mass of the host lattice atom, and v is the average phonon
velocity.

It is found [38—40] that the lattice thermal conductivity at Jowest temperature
can be explained very well on the basis of the boundary scattering alone. Accord-
ing to Casimir [38], the boundary scattering relaxation rate 73! can be expressed
as 13" = v/L, where v is the phonon velocity and L is the Ca51mir [38] length
of the crystal, which depends on the size of the sample.

In view of the scattermg relaxation rates stated above, the combined scattering
relaxation rates 1% and 17} for transverse and longitudinal phonons, respectively,
used in the present analys1s are given by

m; |2
Tn‘) (17)

Tor = Tt + Aw* + (Bry,; + Byy e M) 7™M Byr@®*T?  (18)

oL = e + Aw' + (Bxy + Bry e %) o? T

+ (Bun + Bruwe "N T 4 B ? T2 (19)
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Assuming the spherical symmetry of the Brillouin zone (i.e. of the three polariza-
tion branches, one is longitudinal and two are transverse) and the fact that each
phonon contributes separately towards the total lattice thermal conductivity, the
contribution due to each mode of phonons can be expressed as

K; = (1/67%) [ 7. ;v7 ; (heo K T?) eh@/KeT (gho/KeT _ 1y-2
g*dq + AK 20)

where integration is performed over the first Brillouin zone, v, is the group velocity,
g is the phonon wave vector, and suffix i stands for the polarisation branches.
AK is the correction term [1] due to the three-phonon N-processes, and reduces
to zero in the absence of the three-phonon normal processes. The correction term
AK has been studied by several workers [41 —50] and it is found that the contribu-
tion of AK towards the total lattice thermal conductivity is very small [42—50]
at low and at high temperatures in the frame of the Callaway [1] integral as well
as in the frame of the generalized Callaway integral [51, 52], its contribution can
be ignored compared to the contribution due to the first term in eqn. (20). Solid
He [41] and LiF [53], solid HD [54] are exceptions [41, 53, 54] to this.
Following the earlier work of Verma et al. [55], Dubey [33] used a better
dispersion relation g = (w/v) (1 + rw®) to replace ¢ into w in eqn. (20), where r is
a constant and depends on the dispersion curve of the sample under study. It can
be calculated with the help of the experimental dispersion curve. It is needed to
be stated that the velocity of phonons does not remain constant in the entire
range of the first Brillouin zone. To be more exact, the entire first Brillouin zone
can be divided into two ranges, 0 — —;« Grax and % Grnax — Gmax> Where g, 1S the
phonon wave vector corresponding to the zone boundary of the first Brillouin
zone, and following Verma et al. [55] different velocities are taken in the ranges

1 1
0 - E Imax and _2_ Gmax — 9max-

Thus, the total lattice thermal conductivity can be expressed as
K=K + K, 2n

where Kt and K; are the contributions due to transverse and longitudinal phonons,
respectively, and these are given by

6,T
K= ;%J Tor(1 + RyxX*THA(1 + 3R, T I xte(eX — 1) Pdx
0
6./
+ ;q— J Tor(l + RoxX®THE(1 + 3Ry x* TH)  TxteX (e — 1) 2dx (22)
T2
8,/T
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8/T
K = E}%J T (I + RyxX*THX(1 + 3R, x> T?) 1 x*eX(e¥ — 1) %dx
6
04T
+ 50r j T+ RxXPTHA(1 + 3R x*TH  1xter (¥ — 1) 2dx (23)
05/T

where C = (Kp/37%) (K T/hY’, R = r(Ky/h), i =1,2,3 and 4, 7,; = (7)) 7%
i=Tand L, 0, =hw/Kyg, i=1,2,3and4,r, and r, are the dispersion

. 1
constants for transverse phonons in the ranges 0 — 5 dmax and

respectively, r; and ry are the same for longitudinal phonons, vy and vy, are the

? Imax — maxs

o 1
transverse phonon velocities in the ranges 0 — 5 Imax and

spectively, vr; and v, , are the same for longitudinal phonons, w; and w, are trans-

"z_qmax — 9max» TG~

Table 3

The constants and parameters used in the calculation of the lattice thermal conductivities of
Mg,Si and Mg,Ge in the temperature range 2 — 1000 K

Constants Mg,Si Mg,Ge

vr; (cm/sec) 4.6 10° 3.9 10°
vy, (Cm/sec) 1.4 10° 1.8 10°
vi, {cm/sec) 6.4 108 5.8 108
vy (cm/sec) 5.1 108 2.4 10°
0, (K) 154 140

05 (K) 224 210

8, (K) 254 306

6, (K) 392 210

0/a (K) 300 260

ry (sec?) 3.250 10-= 1.24 102
¥y (sec?) 6.428 10—= 5.534 10-%
r3 (sec?) 1.019 10—* 2.66 1028
r, (sec?) 8.804 10-2 6518 10-%
757 (sec™) 5.68 108 1.7 108
75t (sec™) 7.90 10° 2.6 108

A (sec) 8.0 10— 1.4 10-#
Brnx (deg™™) 1.7 10— 1.0 10-12
Bry.r (deg™™) 4,61 10-3 3.6 10-5
Bin,1 (sec. deg™™) 50 10— 1.0 10—
Byy,1 (sec. deg™™) 1.0 1072 1.0 10-23
By, i (sec. deg—™) 525 102 1.0 1022
Bry n (sec. deg—™) 7.0 10-Y7 3.0 10-v
Byr (sec. deg—?%) 1.2 102 1.0 10—
By (sec. deg—?) 1.2 10-% 1.0 10—*
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. . 1
verse phonon frequencies corresponding to the wave vectors 5 fmax and ¢,

respectively, w; and @, are the same for longitudinal phonons, and 3% and 771
are the combined scattering relaxation rates for transverse and longitudinal
phonons, respectively, as stated earlier.

Lattice thermal conductivity of Mg,Ge

The constants relating to the dispersion curve are calculated with the help o-
the experimental dispersion curve of Mg,Ge reported by Chung et al. [56], anp
the values obtained are reported in Table 3. Using these constants, the tempera
ture exponents my, ((T) for class I events for transverse phonons and m; (7)) and
my, (T for longitudinal phonons for class I and class IT events, respectively, fio
the three-phonon scattering relaxation rates have been calculated for Mg,Ge fn

;! [m(T)]Guthrie

u
1.
s Mot

R R T p ( S - -
8 10
«i0? temperature, K

o)

~
~
)

Fig. 1. The temperature exponent myg, (T') for class I events for transverse phonons for Mg,Ge.
Solid line represents values of my, (T’) used in the present analysis. Dashed line represents values
obtained in the frame of the SDV model, while dot-dashed line shows the upper limit of
Guthrie

Mg,Ge

S fe i et bl et SRS
5 8 10
x10% temperature, K

Fig. 2. The temperature exponent my ((T) for class I events for longitudinal phonons for

Mg,Ge. Solid line represents values of my, (7') used in the present analysis. Dashed line repre-

sents values obtained in the frame of the SDV model, while dot-dashed line shows the upper
limit of Guthrie
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mi

[m(T)]Guthrie

[m(Mlspy

1O e ¢ o ¢ s ¢ o o e s s o e s s e s p—

Mg, Ge

\ |

10

x102 temperature, K

243

Fig. 3. The temperature exponent my, y(T) for class II events for longitudinal phonons for
Mg,Ge. Solid line represents values of m ;(T') used in the present analysis. Dot-dashed lines
shows the value used in the SDV model as well as the upper limit of Guthrie

the entire temperature range 2— 1000 K with the help of eqns. (8) and (9); the
results obtained are reported in Figs 1— 3. To make them more clear, these values
are also listed in Table 4. To have a comparative study of the temperature expo-

Table 4

The temperature exponents my, ((T), my, (T) and my, o(T) for 73}, for Mg,Ge in the temperature
range 2— 1000 K. mq ((T') for class 1 events for transverse phonons, my, (T) and my y(T) for
class I and class II events, respectively, for longitudinal phonons

T, K m1,1(T) my,(T) mp, u(T)
1000 1.00367 1.00367 0.99908
900 1.00453 1.00453 0.99886
800 1.00573 1.00573 0.99856
700 1.00748 1.00748 0.99812
600 1.01018 1.01018 0.99745
500 1.01465 1.01465 0.99634
400 1.02266 1.02286 0.99430
300 1.04050 1.04050 0.98993"

200 1.09022 1.09022 0.99774
100 1.34304 1.34304 0.91870
90 1.41723 1.41723 0.90231
80 1.51750 1.51750 0.88084
70 1.65718 1.65718 0.85223
60 1.85898 1.85898 0.81357
50 2.16394 2.1639%4 0.76107
40 2.65269 2.65269 0.69115
30 3.50638 3.0 0.60578
20 4.0 3.0 0.52755
10 4.0 3.0 0.50028
8 4.0 3.0 0.50002

6 4.0 3.0 0.5

4 4.0 3.0 0.5

2 4.0 3.0 0.5
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nents used in the present analysis with those of the earlier workers, the tempera-
ture exponents have been calculated in the frame of the Sharma — Dubey — Verma
(SDV) model [4, 5], and the results obtained are reported in Figs 1—3, together
with m(T) used in the present analysis. The upper limits of m(T) found by Guthrie
[31] have been calculated in the entire temperature range of study, and the results
obtained are shown in Figs 1-—3.

Following the work of the carlier workers, and considering that at lowest tem-
perature the entire lattice thermal resistivity of the sample under study is due

Mg, Ge

]
f

K, wem™deg™!

10»2 L ! i | [

1 10 102 10?
Temperature , K

Fig. 4. Total lattice thermal conductivity of Mg,Ge in the temperature range 2— 1000 K. Solid
line shows calculated values, and circles are experimental points

mainly to boundary scattering, the Casimir length [38] of the sample has been
calculated at 2 K; hence, the boundary scattering relaxation rates 73y and TEL
for transverse and longitudinal phonons, respectively, are calculated at 2 K. The
values of these two constants are found to be the same as obtained by Dubey [57,
58]. The point-defect scattering strength 4 has been adjusted at 8 K, ignoring the
contribution due to the three-phonon scattering relaxation rate. The value obtained
is the same as reported by Dubey [58, 59] and by Martin [59].

As we know, at low temperatures 75,5 x dominates over T3 y, while Tiph, U
dominates over Ts x at high temperatures. Following the earlier work of Dubey
[33] and considering the fact stated above, approximate values of constants
Brn,1> Bun,y and Byy, i have been calculated at 20 K, ignoring the contribution
due to 75, y, with the help of the experimental values of the lattice thermal con-
ductivity, while the approximate values of the constants Bry,;, Bru,; and Bru,in
are estimated at 200 K, neglecting the contribution due to T34~ The values of
these constants have been further corrected at 100 K, considering the contributions
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of ©5% ~ and of 73} y. The constants Byy and By, related to the four-phonon
scattering strength are calculated at 500 K with the help of the numerical integra-
tion of the conductivity integrals. The values of these constants, as obtained above,
are listed in Table 3. The experimental data on the lattice thermal conductivity of
Mg,Ge for the theoretical verification are taken from the earlier report of
Martin [59].

Using the constants reported in Table 3, the total lattice thermal conductivity
of Mg,Ge has been calculated in the entire temperature range 2—1000 K by

Mg, Ge
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T
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20k e /

N T
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Fig. 5. The percentage contributions % Ky and % K, towards the total lattice thermal con-
ductivity of Mg,Ge due to transverse and,longitudinal phonons, respectively. Dashed and
dot-dashed lines represent % Kyand %, Ky, respectively

estimating the separate contributions K due to transverse, and K; due to longi-
tudinal phonons, with the help of the numerical integration of the conductivity
integrals in eqns. (22) and (23), respectively, and the results obtained are shown in
Fig. 4. The separate percentage contribution % K and 9% K; due to transverse
and longitudinal phonons, respectively, towards the total lattice thermal con-
ductivity have been analysed in the entire temperature range 2 —1000 K, and the
results obtained are reported in Fig. 5.

To analyse the roles of three-phonon N- and U-processes, the percentage
contributions of 73,  and 75}, y towards the three-phonon scattering relaxation
rate 73, have been studied for class I events for transverse phonons, and for
class I and class II events for longitudinal phonons for Mg,Ge in the entire tem-
perature range 2— 1000 K, and the results obtained are illustrated in Figs 6—8.
The percentage contributions of 73}, 1 for class I events for transverse phonons,
and 733, 1 (class I + class IT) for longitudinal phonons, towards the combined
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scattering relaxation rates of the respective modes 7.1 and 171 are calculated for

1 1 3
the four different values of the phonon frequency w = 7 Omax> 5 Pmax 7 Omax and

®paxs 10 the absence of the four-phonon scattering processes; the results obtained
are reported in Tables 5 and 6.

Lattice thermal conductivity of Mg,Si

The experimental data on the lattice thermal conductivity of Mg,Si for the
theoretical analysis are taken from the earlier report of Martin [59]. The con-
stants relating to the dispersion curve are calculated with the help of the experi-
mental dispersion curve reported by Whitten et al. [60], and the values obtained
are listed in Table 3. Using these constants, the temperature exponents my (T)
for class 1 events for transverse phonons, and my ((T) and my 1(T) for class I
and class IT events, respectively, for longitudinal phonons, have been calculated
with the help of Egs (8) and (9) similarly as for Mg,Ge, in the entire tempera-
ture range 2—1000 K, and the results obtained are listed in Table 7. The values of
m(T) used in the SDV model [4, 5] and the upper limits of Guthrie [31] have also

been estimated, and the results are shown in Figs 9—11, together with m(7)
used in the present analysis.
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Table 5

The percentage contribution of the three-phonon scattering relaxation rate 73}  towards the

combined scattering relaxation rate 77} due to transverse phonons for Mg,Ge due to class I

events in the absence of the four- phonon processes for four different values of the phonon
frequencies. @y, represents the maximum frequency of transverse phonons

% T3ph, T % Tiph, T % tipn, T % T3on,T
X 1 1 3
foro = 7 wmax forow = 0 ®max form = vy ®Omax for © = omax

1000 99.98 99.87 99.57 98.98
900 99.98 99.85 99.51 98.85
800 99.97 99.83 99.43 98.67
700 99.97 99.80 99.33 98.43
600 99.96 99.75 99.18 98.09
500 99.95 99.68 98.96 97.57
400 99.94 99.57 98.59 96.73
300 99.91 99.36 97.89 95.15
200 99.84 98.86 96.26 91.58
100 99.63 97.26 91.35 81.68
90 99.59 96.99 90.56 80.19
80 99.55 96.72 89.77 78.75
70 99.52 96.48 89.08 77.49
60 99.50 96.31 88.60 76.64
50 99.49 96,27 88.47 76.41
40 99.50 96.34 88.67 76.37
30 99.49 96,25 88.41 76.30
20 73.39 26.53 9.69 4,33

10 0.20 0.02 0.01 0

8 0.08 0.01 0 0

6 0.02 0 0 0

4 0 0 0 0

2 0 0 0 0

mA

m(T )]Guthne
Mg, S
(TMspy 92!

X10° temperature , K

Fig. 9. The temperature exponent my ((T) for class I events for transverse phonons for Mg,Si.

Solid line represents values of mp (T) used in the present analysis. Dashedline represents

values obtained in the frame of the SDV model, while dot-dashed line shows the upper limit
of Guthrie
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Table 6

The percentage contribution of the three-phonon scattering relaxation rate 73] 1, towards the

combined scattering relaxation rate 7} for Mg,Ge due to the combined effect of class I and

class II events in the absence of four-phonon processes for four different values of the phonon
frequency. wy,, represents the maximum frequency of longitudinal phonons

% Tanh,L %Troh,L % TiohL % Tian.L
T, K 1 1 3
form = s Omax for o = > Wmax foro = Y Omax for @ = ®max

1000 100 99.98 99.97 99.95
900 100 99.98 99.97 99.95
800 100 99.98 99.96 99.94
700 100 99.98 99.96 99.93
600 100 99.97 99.95 99.91
500 100 99.96 99,93 99.88
400 99.98 99.95 99.90 99.83
300 99.98 99.92 99,83 99.70
200 99.95 99.81 99.59 99.28
100 99.54 98.29 96.26 93.54
90 99.27 97.32 94.20 90.14
80 98.74 95.41 90.26 83.91
70 97.48 91.14 82.10 72.08
60 93.99 80.51 64.90 51.00
50 82.23 55.07 35.35 23.53
40 45.88 18.34 9.10 5.34
30 8.85 2.51 1.13 0.64
20 1.23 0.33 0.15 0.08
10 0.18 0.05 0.022 0.01

8 0.11 0.03 0.01 0

6 0.06 0.02 0 0

4 0.04 0 0 0

2 0.02 0 0 0

Mg, Si
vl it wldnefon etaeleto S P R NP »
. 5 8 10

x10? temperature , K
Fig. 1.0. The temperature exponent my () for class I events for longitudinal phonons fo
Mg,Si. Solid line represents values of my, (T) used in the present analysis. Dashed line repre
sents values obtained in the frame of the SDV model, while dot-dashed line shows the upper
limit of Guthrie
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Table 7

The temperature exponents sy, (T), m, (T) and my y(T) for T forMg,Si in the temperature
range 2— 1000 K. my,((T) for class I events for transverse phonons, my, (T) and my n(T) for
class I and class II events, respectively, for longitudinal phonons

LK my, (T) my, (T my,u(T)

1000 1.00417 1.01277 0.99681
900 1.00515 1.01575 0.99606
800 1.00652 1.01992 0.99503
700 1.00851 1.02599 0.99352
600 1.01158 1.03531 0.99121
500 1.01666 1.05070 0.98742
400 1.02599 1:07878 0.98053
300 1.04603 1.13839 0.96612
200 1.10241 1.30134 0.82810
100 1.38687 2.03935 0.78167

90 1.46972 2.23440 0.74993
80 1.58129 2.48676 0.71360
70 1.73598 2.82078 0.670%0
60 1.95812 3.0 0.62475
50 2.29135 3.0 0.57780
40 2.82078 3.0 0.53641
30 2.73760 3.0 0.50950
20 4.0 3.0 0.50054
10 4.0 3.0 0.5

8 4.0 3.0 0.5

6 4.0 3.0 0.5

4 4.0 3.0 0.5

2 4.0 3.0 0.5

mi
I Mguthre  [™TMspy
10h e e e e s o P
Mg, S
g, (T J2 ot
05 : | | ! : . i : I
o 2 4 5 8 10

«10? temperature , K+

Fig. 11. The temperature exponent my n(7) for class Il events for longitudinal phonons for
Mg,Si. Solid line represents values of my (T) used in the present analysis. Dot-dashed line
shows values used in the SDV model as well as the upper limit of Guthrie
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The boundary scattering relaxation rates tz'y and 15} for transverse and
longitudinal phonons, respectively, and the point-defect scattering strength 4 have
been calculated at 2 and 8 K, respectively, similarly as for Mg,Ge, and the values
obtained are the same as obtained by Dubey [58, 61]. The constants relating to
three-phonon and four-phonon scattering strengths have been estimated at different
temperatures as stated in the earlier section for Mg,Ge, and the values obtained
are listed in Table 3.

Using the constants reported in Table 3, the total lattice thermal conductivity
of Mg,Si has been calculated in the entire temperature range 2—1000 K by
estimating the contributions Ky and K| separately with the help of the numerical

Mg, S

KW cm' deg™

-2 . | . ! !
10 >
1 0 102 10

Temperature , K

Fig. 12. Total lattice thermal conductivity of Mg,Si in the temperature range 2— 1000 K. Solid
line shows calculated values, and circles are experimental points

integration of eqns. (22) and (23), and the results obtained are shown in Fig. 12.
To study the relative contribution of each mode, the percentage contributions
7 Kt and % K; towards the total lattice thermal conductivity of Mg,Si have
been analysed in the temperature range 2—1000 K, and the results obtained are
illustrated in Fig. 13.

To study the relative roles of three-phonon N and U-processes, the percentage
contributions % 73},  and % 73, y towards the three-phonon scattering relaxa-
tion rate 73} have been analysed for class I events for transverse phonons and
class I and class II events for longitudinal phonons, similarly as for Mg,Ge, and
the results obtained are shown in Figs 14—16. To see the importance of Tiph
in the estimation of the lattice thermal conductivity, the percentage contributions
of 73, 1 of class I events for transverse phonons and Taph, 1, (class 1 + class IT)
for longitudinal phonons towards the combined scattering relaxation rates o
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for longitudinal phonons for Mg,Si in the temperature range 2— 1000 K. Solid and dashed
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Table 8

The percentage contribution of the three-phonon scattering relaxation rate z3;), 5 towards the

combined scattering relaxation rate 7,4+ due to transverse phonons for Mg,Si due to class I

events in the absence of four-phonon processes for four different values of the phonon fre-
quency. wp,y represents the maximum frequency of transverse phonons

%TionT %%5oh, T %tiph %tiohT
T, K for e = t 3
orw = " @max fore = 5 ©Omax form = 7 Pmax for @ = max
1000 100 100 99.97 99.94
900 100 100 99.97 99,93
800 100 99.98 99.96 99.92
700 100 99.98 99.96 99.90
600 100 99.98 99.95 99.88
500 100 99.97 99.93 99.85
400 99,98 99.97 99.91 99.80
300 99.98 99.95 99.86 99.69
200 99.96 99.91 99.75 99.42
100 99.92 99.78 99.36 98.52
90 99.91 99.76 99.28 98.36
80 99.90 99.73 99.21 98.19
70 99.89 99.71 99.14 98.02
60 99.88 99.69 99.07 97.88
50 99.87 99.67 99.02 97.77
40 99.87 99.65 98.96 97.63
30 99,84 99.58 98.75 97.15
20 69.87 46.49 22.37 11.04
10 1.53 0.58 0.1% 0.08
8 0.63 0.23 0.07 0.03
6 0.20 0.07 0.02 0.01
4 0.03 0.01 0 9
2 0 0 0 0

and ;1 of the respective modes have been studied for the four different values
1 1 3 .
of the phonon frequency w = Zwmax, —2—wmax, Zwmax and w,,,, in the absence

of four-phonon processes; the results obtained are listed in Tables 8 and 9.

Comparative investigation of the present study with the previous study

To see the value of the present study, it is needed to make a comparative study
of the present analysis with the previous studies, and the present section is con-
cerned with this. Martin [59] studied the lattice thermal conductivities of Mg,Ge
and Mg,Si in the temperature range 4~700 K in the frame of the two-mode con-
duction of phonons proposed by Holland [2]. From Tables 1 and 2, it is clear that

J. Thermal Anal. 24, 1982



AWAD, DUBEY: ANALYSIS OF THERMAL CONDUCTIVITY 255

Table 9

The percentage contribution of the three-phonon scattering rate 73, | towards the combined
scattering relaxation rate 7 1 for Mg,Si due to longitudinal phonons due to the combined
effect of class I and class II events in the absence of four-phonon processes for four different
values of the phonon frequency. w,,,x represents the maximum frequency of longitudinal

phonons
%Tiph,L % T, L % T3ph, L % Tioh, L
T, K fore = L 1 3 for o
oro = T Omax forw = ) ©Omax foro = vy ®Omax O @ = Wmax

1000 100 100 100 100

900 100 100 100 100

800 100 100 100 100

700 100 100 100 100

600 100 100 100 100
500 100 100 100 99.98
400 100 100 99.98 99.98
300 100 100 99.98 99.96
200 100 99.97 99.94 99.90
100 99.86 99.58 99.08 98.39
90 99.75 99.28 98.43 . 97.25
80 99.54 98.63 97.04 94.87
70 99.04 97.18 93.98 89.80
60 97.80 93.68 87.03 79.11
50 94,01 83.97 70.33 57.22
40 84.55 64.611 45.24 31.79
30 71.46 45.51 27.43 17.58
20 60.50 33.81 18.78 11.54
10 48.76 24.09 12.56 7.49
8 45.67 21.89 11.25 6.68
6 41.91 19.40 9.82 5.79
4 36.95 16.35 8.12 4.75
2 29.25 12.11 5.87 3.40

(in the frame of the Holland model) Martin [59] could not consider the contribu-

. . 1
tion of three-phonon N-processes in the rangezqm,(lx — max and three-phonon

. 1 . . .
U-processes in the range 0 — 7 dmax 10 the calculation of the lattice thermal con-

ductivity Kt due to transverse phonons. At the same time, it is also clear that
he could not consider the contribution of the three-phonon U-processes in the
entire range of the Brillouin zone 0 — g, in the calculation of the lattice thermal
conductivity K; due to longitudinal phonons. Thus, it can be said that Martin [59]
used only one process (either N- or U-process) in the calculation of the lattice
thermal conductivities of Mg,Ge and Mg,Si. From Tables 1 and 2, it is also clear
that (in the frame of the Holland [2] model) Martin [59] used the Herring [11]

J. Thermal Anal. 24, 1982



256 AWAD, DUBEY: ANALYSIS OF THERMAL CONDUCTIVITY

relations 73, v ¢ @T*and 135, 1 oc wvT?® for three-phonon N-processes in the
entire temperature range of study, which are valid at low temperatures only.

Misho and Dubey [62] calculated the lattice thermal conductivities of Mg,Ge
and Mg,Si in the temperature range 4— 1000 K in the frame of the expression for
'c;plh proposed by Joshi and Verma [3]. From Tables 1 and 2, it is clear that (in
the frame of Joshi and Verma [3]) they could not consider the contribution of
three-phonon U-processes. At the same time, they used discrete values of the
temperature exponent m(T) in place of a continuous value. However, they tried
to use the Guthrie [31] expression for the temperature exponent m(7T).

The lattice thermal conductivities of Mg,Ge and Mg,Si were studied by Dubey
[57, 58] in the temperature range 4 —800 K in the frame of the Sharma — Dubey —
Verma (SDV) model [4, 5]. From Tables 1 and 2, it is clear that Dubey [58, 59]
(in the frame of the SDV model [4, 5]) ignored the contribution of the three-
phonon N-processes in the calculation of the lattice thermal conductivity in the
entire temperature range. At the same time the expression (see Eqs 5, 6 and 22
of ref. 4) for the temperature exponent m(T) used in the SDV model [4, 5] contains
an empirical factor (1 + 6/a7). However, it must be stated that Dubey [57, 58}
was the first to use a continuous value of the temperature exponent »(T) in the
analysis of the lattice thermal conductivities of MgGe and of Mg,Si.

With the help of Egs (8) and (9), it is clear that in the present analysis of the
lattice thermal conductivities of Mg,Ge and Mg,Si, the Guthrie [31] expression
for the temperature exponent m(T) for 73, has been incorporated without any
empirical factor. At the same time, the contributions due to three-phonon N and
U-processes are included in the entire temperature range 2 — 1000 K for transverse
and longitudinal phonons. The expression for r3ph used in the present analysis is
based on the Guthrie [31] classification of class T and class 1I events. At the same
time, it is also based on the N- and U-processes. The role of the four-phonon
processes is included in the present study. It is interesting to note that the role of
the three-phonon scattering relaxation rate has been reported in more detail in
the present work.

Results and discussion

First of all, we shall discuss the three-phonon scattering relaxation rate and its.
temperature exponents. The temperature exponents my, ((T), my, ((T) and my (T
used in the present analysis can be studied with the help of Tables 4 and 7 for
Mg,Ge and Mg,Si, respectively, while their continuous nature can be seen with
the help of Figs 1—3 and Figs 9—11 for Mg,Ge and Mg,Si, respectively. With
the help of these Tables and Figures, it can be seen that at high temperatures
mr(T), my (T) and my (T) tend to unity. As a result, at high temperatures
(e“”’“‘T - 1 due to the large value of T) the expression used for T3pn Teduces to
3w oc T, which is similar to the earlier findings of Herring [11]. At the same
time, it also results in K oc 1/T at high temperatures, which is similar to the pre-
vious findings. At low temperatures, m ((T) and my (7') tend to 4 and 3, respec-
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tively, which are the same as reported by Herring [11]. Through the numerical
analysis of the conductivity integrals for K|, it is found that at low temperatures
the scattering relaxation rate due to class II events is much smaller compared to
the same due to class I events. At the same time, due to the low value of T, the
factor e~®*T is negligibly small. Thus, the expression for t3; used in the present
analysis reduces to t3,y, oc wT* for transverse phonons and 13, o w2T® for
longitudinal phonons, which are similar to the earlier findings of Herring [11].
From these Figures, it is also clear that the values of m(T) used in the calculation
of the lattice thermal conductivities of Mg,Ge and Mg,Si lie in the range 1—4
for transverse phonons and 1—3 for longitudinal phonons in the entire tempera-
ture range 2— 1000 K, and the upper limit of Guthrie [31] is not exceeded at any
temperature. Thus, they are free from the Guthrie comments [32] too. Therefore,
it can be said that the values of m(T") used in the present analysis of the lattice
thermal conductivities of Mg,Ge and Mg,Si are more realistic than those used
by earlier workers [57, 58, 61, 62].

With the help of Figs 4 and 12, it can be seen that the agreement between the
calculated and experimental values of the lattice thermal conductivity is very good
in the entire temperature range 2—1000 @ for both Mg,Ge and Mg,Si. Thus,
one can say that the expression used for rgplh gives a good response to the experi-
mental data on the lattice thermal conductivity at low and at high temperatures.
In other words, it can be said that the experimental data on the lattice thermal
conductivity of a sample can be explained well in the frame of the expression for
T34 Proposed by Dubey [33].

The relative contributions of transverse and longitudinal phonons towards the
total lattice thermal conductivities of Mg,Ge and Mg,Si can be studied with the
help of Figs 5 and 13, respectively. From these two Figures, it can be seen that
at high temperatures the percentage contribution %, K due to transverse phonons
dominates over % K. In other words, one can say that at high temperature most
of the heat is carried by transverse phonons, which is similar to the findings of
the previous workers [2—7, 63—65] based on the relaxation time approach [2—7]
and on the variational method [63 —65]. From these two Figures, it is clear that
at low temperatures 9, Ky is larger than % K;, which can be understood as fol-
lows. At very low temperatures, the lattice thermal resistivity is mainly due to
the boundary scattering and the lattice specific heat oc T°. As a result, the ratio
% K1/ % Kp depends upon the factor

2vy, 51/ TE) = 2vLfvp)®.

Thus, the percentage contribution % K due to transverse phonons dominates
over 7, K at low temperature too, which is similar to the results reported by
previous workers [55]. At a little higher temperature towards the conductivity
maxima, %, Ky begins to decrease with increasing temperature and, after attain-
ing a minimum value (say 3.2 for Mg,Ge and 3.5 for Mg,Si), at a certain tempera-
ture (say 30 K for Mg,Ge and 30 K for Mg,Si) it begins to increase again. The
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reverse nature is also true for longitudinal phonons. The nature of such variation
can be explained by considering the role of the point-defect scattering (see ref. 55).
These results are similar to those obtained by Sharma et al. [55], for Ge on the
basis of the Holland [2] model. At the same time, it is also similar to those
obtained by Dubey [58] for Mg,Ge in the frame of the SDV model [4, 5].

The relative importance of three-phonon N- and U-processes in the calculation
of the lattice thermal conductivities of Mg,Ge and Mg,Si can be studied with
the help of Figs 6—8 and 14— 16, respectively. From these Figures, it is clear
that at low temperature 73, y dominates over 5. y for both transverse and
longitudinal phonons and also in both class I and class. IT events. At the same
time, it can be seen that at high temperatures 735, ; dominates over T3 - As a
result, one can say that at low temperature three-phonon N-processes play a
dominating role in the estimation of the lattice thermal conductivity of both
samples, whereas at high temperatures the lattice thermal resistivity is mainly
due to three-phonon U-processes. These findings are in agreement with the findings
of the earlier workers [4, 5, 33].

The importance of three-phonon scattering relaxatlon rates T3 ¢ (class I) and
Tph L (Class I + class IT) can be studied with the help of Tables 5, 6 and 8, 9
for Mg,Ge and Mg,Si, respectively, which show the percentage contributions
% Taph,1 and % Tipp 1, towards the combined scattering relaxation rates ;% and
71, respectively, in the absence of the four-phonon scattering relaxation rate
Tiphe 1t should be noted that in these Tables, in some places, the contributions are
reported as zero. In fact, these are not zero, but a very small quantity. Similarly,
in some places we have reported the percentage contributions as 100; these are
not 100, but very close to 100. From these Tables, it is clear that at high tempera-
tures 73, dominates over the point-defect and boundary scattering relaxation
rates. As a result, it can be said that at high temperatures the lattice thermal
resistivity of a sample is mainly due to phonon-phonon scattering, which is similar
to the earlier findings of Mamilton and Parrott [63] based on the variational
method. At the same time, it is similar to those reported by Dubey [33, 66] for
Si and Ge based on the relaxation time approach. From these Tables, it can be
seen that at low temperatures (say below 15 K) the percentage contribution
% T3on due to the three- phonon scattermg re]axa’uon rate is very small, which
shows the domination of 75" and ;! over 13, at low temperatures. Due to these
results, one can say that at low temperatures the lattice. thermal resistivity of a
sample is mainly due to boundary and point-defect scattering relaxation rates,
which is in agreement with the previous findings [38—40, 55].
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ZUSAMMENFASSUNG — Die thermischen Gitterleitfahigkeiten von Mg,Ge und Mg,Si wurden
im ganzen Temperaturbereich von 2 bis 1000 K im Rahmen eines neuen Ausdrucks fiir die
Relaxationsrate der Phonon-Phonon Streuung analysiert, welche von Dubey als

T = (B, + Buy,1¢ ~BreTy g(w) TP 4 (By,ut + Bu,u e=9T) g(w) TP

vorgeschlagen wird, undzwar auf der Guthrie-schen Klassifizierung der Phonon-Phonon
Streuung beruhend. Auf diese Weise wurde eine sehr gute Ubereinstimmung zwischen den
berechneten und experimentellen Werten der thermischen Gitterleitfihigkeit fiir beide Proben
im ganzen Temperaturbereich der Untersuchungen erhalten. Die separaten prozentualen Bei-
triage, welche den Drei-Phonon Normal- und Umklapp-Prozessen in Richtung der Relaxations-
rate der Drei-Phonon-Streuung zuzuschreiben sind, wurden ebenfalls studiert. Die Rolle der
Vier-Phonon-Vorginge wurde in die vorliegende Analyse ebenfalls mit aufgenommen.

Pesrome — g coenuuenuit Mg,Ge u Mg,Si B o6nactu remnepatyp 2—1000 K nposenen ananins
PEIIETOUHO} TEINIONPOBONHOCTA HA OCHOBE HOBOTO BEIPAXKEHHS A CKOPOCTH PeNaKcalluy
doHOH-DOHOHHOTO paccesnus, MPeATOXeHHOro [pio0H M OCHOBAHHOTO HA KIACCAMHKAIMA
TroTpr Wit POHOH-DOHOHHOTO PaCCesTHUsA:

Th = Bx1+ Bu,1e” ") g(w) T™® + (By, 1 + Bu,ue)~"*" g(w) T ™

TIomyYeHo XOpoiiee COBUANCHHS MEKNY BBIMUCIEHHBIME ¥ 3KCIEPAMEHTANLHLIMA 3HAYCHUAMNA
PEIIETOYHOI TEMIONPOBOAHOCTH Aist 000onx 00pa3nos. OTHeNsHO H3YUEH MPOIEHTHEI BKIIAL,
BHOCHMBIA TPeX()OHOHHBIMYK HOPMaJIBHEIME IIPOLECcaMu B IpoIieccaMu mepebpoca B pejakca-
IIHOHHYIO CKOPOCTL TPEX(GOHOHHOIO paccesiavisi. B mpencTaBIeHHOM aHaM3€e BKIIFOUYCHA TaKkKe
PO YeTHIPexHOHOHHBIX IPOIECCOB.
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