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The lattice thermal conductivities of Mg~Ge and Mg2Si have been analysed in the 
entire temperature range 2-- i000 K in the frame of a new expression for the phonon- 
phonon scattering relaxation rate proposed by Dubey as 

t r~  = (BN, 1 + Bud e-O/~X)g(co)TmI Cx) -t- (BN, II + Bo, u e-Ol~w)g(co)T mn(T) 

based on the Guthrie classification of the phonon-phonon scattering events, and a very 
good agreement has been obtained between the calculated and experimental values of 
the lattice thermal conductivity for both samples in the entire temperature range of the 
study. The separate percentage contributions due to three-phonon normal and umklapp 
processes towards the three-phonon scattering relaxation rate have also been studied. 
The role of the four-phonon processes has been included in the present analysis. 

The lattice thermal conductivities of insulators and semiconductors have been 
studied by a number  of workers [1 - 10] and it is well established that  phonon- 
phonon scattering plays a very important role in the analysis of the lattice thermal 
conductivity of  a sample. The three-phonon scattering processes dominate over 
other processes at high temperatures.  At the same time, these processes are not 
negligibly small at low temperatures and play an important role in the vicinity 
of  the conductivity maxima. However, due to the complex structure of the Brillouin 
zone and the strong temperature-dependence of  the phonon distribution function, 
the three-phonon scattering relaxation rate involves a complicated dependence on 
the phonon frequency as well as on the temperature. As a result, even at present 
we lack an exact analytical expression for this. For  practical purposes, there is a 
need to express the three-phonon scattering relaxation rate by simple relations as 
a function of the phonon frequency and temperature. Several workers [ 1 - 7 ,  
1 1 - 1 4 ]  studied the phonon-phonon scattering processes by dividing them into 
groups: normal  processes (N-processes), in which momentum is conserved, and 
umklapp processes (U-processes), in which momentum is not conserved, and they 
expressed the three-phonon scattering relaxation rates T3ph,-1 N and ~3ph,-Z U due to 
N- and U-processes, respectively, as simple functions of the phonon frequency 
and temperature,  as reported in Table 1. The expressions in Table 1 have been 
used by a number of workers [15-20]  to analyse the lattice thermal conductiv- 
ities of  the different samples in the f rame of  the combined scattering relaxation 
rates (see Table 2) at high as well as at low temperatures,  and it is reported that 
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Table 1 

The three-phonon scattering relaxation rates. In these expressions, B's are constants and are 
known as the scattering strenghts of the respective processes, ~ is constant, 0 is the Debye 
temperature and qrn~x is the zone boundary of the first Brillouin zone. Suffixes T a n d  L stand 
for transverse and longitudinal phonons, respectively, and suffixes N and U refer to three- 

phonon normal and umklapp processes, respectively 

T h r e e - p h o n o n  processes r3-~ 1 Re laxa t ion  rate  

Normal processes [111 (N-processes) : v ~ ,  N 

Transverse: ~ = BTCO T 4 / at low 
temperature 

Longitudinal: Tff~ = B L to 2 T 3 ! 
-1 = B~co T ] Transverse: 7:TN / at high temperature 

Longitudinal: -rL-N ~ = B~o 2 Y 

Umklapp processes (U-processes): 7:~,u 

Klemens [13 ] (longitudinal) : ZL,-1U = Bu co2T ~ e -O/aT ] 

Klemens [12] (transverse): ~ , 1  = B'u c~176 ] at low temperature 

Holland [2] (transverse): z~',lu = BT, u ~z /S inh  (h~~ 1/2qmax --  qmax 
"r~,~ = 0 0 -- 1/2qmax 

Callaway [1]: ~- t  = BvcoZT a 0 --  qmax 
7:-a = BVco2T at high temperature 

Joshi and Verma [3] (transverse): 7:3oh.-! T = BTCOT m 0 - -  qmax 

(longitudinal) : 7:~,L = B L  ~ T m  0 - -  qmax 

SDV [4, 5 ] (transverse) : ~;-o~, T = BT, I c~ TroT' IcT)e-O/c~T 0 - -  qmax 

(longitudinal): "r-13ph, L = BL, I c~ 

-1- BL,nCo2T mL, II(T) e -O/aT 0 - -  qmax 

Dubey and Misho [6] (transverse): 7:-Z3pll, T = (BTN -}- BToe-Ola'I)coT m 0 - -  qm,~ 

(longitudinal): 7:3~,h,-1 ~ = (BLN + BLve-~176 m 0 --  q~.x 

Dubey [33] (transverse): 7:-t31~h,T = (BTN, I -~  BTU, I e-O/~T)cOTmT'I(TI 

0 -  qmax 

( Present work) (longitudinal): 7:3Ph, L - - 1  = (BLN, I .~_ BLU, Ie-OIaT)oo2TmI~ ('T) 

+ (BLN, II + BLu, ne-O/~ ran'II(T~ 

0 - -  qmax 

these  express ions  give a g o o d  r e s p o n s e  to  the  expe r imen ta l  d a t a  o n  t he  la t t ice  

t h e r m a l  conduc t iv i ty .  
T h e  t h r e e - p h o n o n  sca t te r ing  r e l axa t i on  rates  were fu r the r  s tud ied  b y  G u t h r i e  

[31, 32] by  d iv id ing  the  p h o n o n - p h o n o n  sca t te r ing  events  in to  two classes:  class I 
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Table 2 

The combined scattering relaxation rates. In these expressions, 0)x and 0)~ are the transverse 
phonon frequencies at 1/2qmax and qrnax, respectively, 0)3 and 0)4 are the same for longitudinal 
phonons, c% is the Debye frequency, ~ffl and Tyt 1 are the boundary and point-defect scattering 
relaxation rate, respectively, and the other terms have the same meanings as stated in Table 1 

Combined scattering relaxation rates zc  1 Frequency range 

Callaway [I] T~ L = T~ ~ + T;tt 1 + (B  1 + B2)0)~'T a 0 - -  ~o D 

Holland [2] ~,~ = Tff 1 + T~ t + B r N 0 ) T  4 0 - -  0)1 

T ~  ="c f f  I + -c~ I + Bruco"/Sinli  (h0) /K~T)  0)1 - -  0)2 

.r~,I = .C~-I _}_ .C~l @ BL0)2T3 0 - -  0) 4 

J o s h i  a n d  V e r m a  [3] T~,~ = -c~ -1 + T~ 1 + B T 0 ) T  m 0 - -  0)2 
T-1 _ c , L  - -  .6~1 + .opt I + BL0)2T  m 0 --  0)4 

(m = 1, 2, 3 or 4, depending on the temperature range) 

B 0) ~mT I(T) --O/aT SDVmodel [4, 5] z g ~ =  Tff I + z~ t + i,i 1 �9 e 0--0)3 

.C~,,1 = T~1 + .c~l + BL, ICO2TmL, I(T)e--OI~T 

+ BL, n 0)2 TmL, II(T)e--O/aT 0 - -  0)1 

Dubey and Misho [6] zg~ = zff I + Tpt'- + (BTN + BTUe-O/~T)0)T  m 0 --  CO s 

"r = "C~ 1 + "C~ 1 + (BLN + BLNe-OI~T)0)~T TM 0 --  C% 

Dubey [331 

(Present Work) 

m = 1, 2, 3 or 4 for transverse phonons, depending on 
temperature range, and 

rn = 1, 2 or 3 for longitudinal phonons, depending on 
temperature range. 

T -1 lt~ - -O/~Th ,r,mT I (T c,T = rff ~ + T~ 1 + (BTN, I + ~ru, le j0)~ ' 

7 -1 c,L ..g~l _1_ T~I .+. (BLN, I _~ B o-Ole~T't 27,mL I (T) LU, I c 109 a " 

+ (BLN,11 + BLU, He--O/aT) 0)2 TmL, n (T) 

0 - 0 )  3 

0 - c o  4 

events, in  which the carrier p h o n o n  is annihi la ted by combinat ion ,  and class II  
events, in  which the carrier p h o n o n  is annihi la ted by splitting. According to 
Guthr ie  [31 ], the scattering relaxat ion rate due to each class of events is of  the form 

�9 ;(hoc g(co)/(r) (1) 

where f ( T )  = T m(T), m ( T )  is a cont inuous  funct ion of the temperature  T, and 
9(co) is the frequency-dependence of  the scattering relaxation rate. Recently, 
consider ing the role of  the th ree-phonon N- and U-processes, and  following the 
Guthr ie  classification of  the p h o n o n - p h o n o n  scattering events, Dubey  [33 ] studied 
the lattice thermal  conduct ivi ty  of a sample by proposing a new expression for 
the th ree-phonon  scattering relaxation rate as 

or. Thermal Anal. 24, 1982 



236 AWAD, DUBEY: ANALYSIS OF THERMAL CONDUCTIVITY 

z3~ h = (BN, I § Bu,Le-~ mI(r) 

-t- (BN, n 4- Brd, iie-~ mu(T) (2) 

The terms are explained in the following section. 
The aim of the present work is to analyse the lattice thermal conductivities of 

MgzGe and Mg2Si in the entire temperature range 2-1000 K in the frame of the 
expression for the three-phonon scattering relaxation rate recently proposed by 
Dubey. The total lattice thermal conductivities of both samples Mg2Ge and Mg~Si 
have been calculated by estimating the contributions due to transverse and longi- 
tudinal phonons separately. The separate percentage contributions due to trans- 
verse and longitudinal phonons towards the total lattice thermal conductivity 
have been reported for both samples in the entire temperature range of the study. 
The variation of the temperature exponent re(T) used in the present analysis with 
temperature has been studied for transverse and longitudinal phonons for both 
Mg2Ge and Mg~Si in the entire temperature range 2-1000 K. The percentage 
contributions due to three-phonon N-processes and U-processes towards the 
phonon-phonon scattering relaxation have been estimated for transverse and 
longitudinal phonons, to see their roles in the analysis of the lattice thermal con- 
ductivity of a sample. To study the importance of the phonon-phonon scattering 
events in more detail, the percentage contribution of the three-phonon scattering 
relaxation rate towards the combined scattering relaxation rate has been calculated 

1 1 3 
for the different values of the phonon frequency o) = ~- (/)max, ~-  O')max, ~-  (/)max and 

COma x for transverse and for longitudinal phonons for both samples, MgzGe and 
Mg~Si. To see the goodness of the present analysis, a comparative study of the 
present analysis with the earlier studies is reported. The contribution of the four- 
phonon scattering processes has been included to estimate the lattice thermal 
conductivity at high temperatures. 

A short feature of the Dubey approach to the lattice thermal conductivity 

There can be many phonon scattering processes that lead to the lattice thermal 
resistivity of a sample. The phonon-phonon scattering processes dominate over 
other processes at high temperatures and these processes can not be ignored at 
low temperatures either. They play an important role even in the vicinity of the 
conductivity maxima. It is difficult to express the three-phonon scattering relaxa- 
tion rate z ~  h as a simple relation, due to the complicated structure of the Brillouin 
zone, as well as the strong temperature-dependence of the phonon distribution 
function. To analyse the experimental data on the lattice thermal conductivity, a 
number of workers [1-7, 11-14] studied the phonon-phonon scattering proc- 
esses and tried to express the three-phonon scattering relaxation rate Z3)h in the 
form of a simple relation as a function of the phonon frequency co and the tern- 
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perature Tfor  the three-phonon N- and U-processes as reported in Table 1. From 
Table 1, it is clear that the frequency-dependence of zf)h is co for transverse 
phonons and o) 2 for longitudinal phonons. It is also clear that the expression for 
z~)h for transverse phonons is different from that for longitudinal phonons. 
It should be noted that the Callaway [ 1 ] expression is an exception to this, due to 
the fact that he could not make any distinction between transverse and longitudinal 
phonons. From this Table, it can also be seen that the expression for Zfp~h for 
U-processes consists of an exponential factor. Using the expressions reported in 
Table 1, the lattice thermal conductivities of a number of samples have been 
studied [15-30] at low and at high temperatures in the frame of the combined 
scattering relaxation rates as given in Table 2. 

As stated earlier, according to Guthrie [31], the phonon-phonon scattering 
relaxation rate can be studied by dividing the phonon-phonon scattering events 
into two classes: class I events, in which the carrier phonon is annihilated by 
combination, and class II events, in which the annihilation of the carrier phonon 
takes place by splitting; the scattering relaxation rates for each class of events 
are the form 

Za)h oc g(~0)T re(T) (3) 

where g(~o) is the frequency-dependence of "Cfplh and is the same as reported by 
Herring [11 ], i.e. 9(o)) = co for transverse phonons and o) 2 for longitudinal pho- 
nons. The temperature exponent re(T) is a continuous function of temperature T. 
Guthrie [31, 32] commented on the use of the Herring [11] relations z;)  h oc T ~ 
.and zf)h oc T 3 for transverse and longitudinal phonons, respectively, at high tem- 
peratures, and suggested that these relations are valid only at low temperatures. 
It is needed to be stated that Guthrie [31 ] could not give any analytical expression 
for the exact value of re(T), except that he reported the extreme values of re(T) as: 

For class I events: 

[m(T) ]ma  x = Xmax [2(e  x . . . .  1) - 1  + 1.01 - 1.0 

[ m ( T ) ] m l  n = 1.0 

(4) 

(5) 

For  class II events: 

[m(T)]ma x = 1.0 (6) 

[re(T) ]mi. = Xmax (e x . . . .  1) - 1 e0.SXmax (7) 

w h e r e  Xma x h (Dmax' T' L 
- KR T , h is the Planck constant divided by 2n, K s is the 

Boltzmann constant, COma x is the phonon frequency at the zone boundary of the 
first Brillouin zone, and suffixes T and L stand for transverse and longitudinal 
phonons, respectively. At the same time, he pointed out that the numerical value 
o f  re(T) for class I events should not exceed 4 for transverse phonons and 3 for 

J. Thermal Anal. 24, 1982 
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longitudinal phonons. Thus, there still remains a large uncertainty in the assign- 
ment of an exact value of m(T). 

In the lack of an expression for the exact value of re(T), to minimise the un- 
certainty, Dubey [33] suggested the use of the average value of its maximum and 
minimum values, which is more realistic compared to the use of the maximum 
value as suggested by Joshi and Verma [3]. Thus, the expression for re(T) used 
by Dubey [33] can be expressed as 

mi(T ) = Xmax(e . . . . .  1) -1 + 0.5Xma x (8) 

for class I events, and 

mIL(T) = 0.5 + 0.5Xmax e~215 (e x . . . .  1) - 1  (9) 

for class II events. 
As stated earlier, the phonon-phonon scattering processes can be divided into 

two processes, N-processes and U-processes, and the scattering relaxation rates 
due to these processes are of the form [11 - 13] 

-~ (10) T3ph, N = BNg(Co ) T re(T) 

for three-phonon N-processes [11] and 

,C3ph , - 1  U = Bug(a)) T m(T)e -0 / "T  (11) 

for three-phonon U-processes [12, 13], where B• and B U are the scattering 
strengths due to N and U-processes, respectively, 0 is the Debye temperature of  
the sample, ~ is a constant, and suffixes N and U refer to N and U-processes, 
respectively. In view of Eqs (10) and (11), Dubey [33] expressed the scattering 

-1 for class I events and z -1 for class II events as relaxation rates z3vh, ~ 3ph, ii 

-1 = (BN, I + Bu, ie-O/~T)g(o)T mr(T) (12) 
"C3ph, I 

- 1  = (BN,  II -I- Bu, ne-~ mII(T) (13) 273ph, II 

Dubey [33] used the same frequency-dependence for N and U-processes due 
to the fact that the frequency-dependence g(co) depends only on the polarisation 
branches. At the same time, the same value of re(T) is assigned to both N and 
U-processes due to the fact that Guthrie [31] obtained the same value of re(T) 
for both processes. 

The Guthrie [31] classification of the phonon-phonon scattering events into 
class I and class II events leads to the participation of transverse phonons in 
class I events only, but the participation of longitudinal phonons in both class I 

--3_ 
and class II events. As a result, Dubey [33] proposed a new expression for Z3phT" 
for transverse phonons 

-1 ~ (BTN, I + Bxu,~e-~ O~Tmx't(x) (14) ~3ph, T 
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because the contribution due to class II events is not possible for Z3ph,-1 T for trans- 
verse phonons. Similarly, the expression for z3ph,-1 L for longitudinal phonons is 
given by [33] 

--1 = (BI_N, I + BL U Ie-OI~r I(T) T3ph, L 

+ (BEN, lI  "4- BLU, n e -0 /aT)co  2 T mLAI(T) (15) 

Besides the three-phonon scattering processes as discussed above, four-phonon 
scattering also plays an important role in the estimation of the lattice thermal 
conductivity at high temperatures. It was Pomeranchuk [34-36] ,  first of all, 
who obtained a simple expression for the four-phonon scattering relaxation 
rate z~pah as 

Z;~h = B~IC02 T 2 (16) 

where B~ is the four-phonon scattering strength. The above expression for Z~-p~h 
has been used by a number of  workers [3, 7, 10] to analyse the lattice thermal 
conductivities of  different samples and it is found that it gives a good response 
to the experimental data. 

The scattering of phonons due to point-defects, isotopes, etc. are most important 
scattering processes at temperatures near the conductivity maxima. At these tem- 
peratures, the high-frequency phonons are not excited to a large extent. When 
the wavelength of  phonons is large compared to an imperfection in the crystal, 
the scattering can be treated in the manner of Lord Rayleigh [37]. Using the 
perturbation theory, Klemens [12] obtained an expression for the point-defect 
scattering relaxation rate zpt 1 for low-frequency phonons: this can be expressed 
a s  ,'opt 1 = A~o 4, where A is the point-defect scattering strength, given by 

11 ) A - ~i fi - (17) 

where V is the atomic volume, f i  is the fraction of the ith impure atom having 
mass mi, m is the mass of the host lattice atom, and v S is the average phonon 
velocity. 

It is found [38-40]  that the lattice thermal conductivity at lowest temperature 
can be explained very well on the basis of the boundary scattering alone. Accord- 
ing to Casimir [38], the boundary scattering relaxation rate z~ 1 can be expressed 
as z~ 1 = v/L, where v is the phonon velocity and L is the Casimir [38] length 
of the crystal, which depends on the size of the sample. 

In view of the scattering relaxation rates stated above, the combined scattering 
relaxation rates Z-~c,T and "c~,]. for transverse and longitudinal phonons, respectively, 
used in the present analysis are given by 

T - 1  = T -1  c,T B,T + Ac~ + (BTN, I + BTu, ie-~ mT'~(T) + BHT~2T 2 (18) 
-C - 1  : T - 1  (,0 4 1) e--O/~T~o)2TmL, I(T) c,L B,L -~ A -1- (BLN, I ~- ~'LU,I  ] 

-~ (BLN, II -~ BLU, II e- O/ocT) (1)2 TmL, nor) + BH { o)2 T 2 (19) 
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Assuming the spherical symmetry of the Brillouin zone (i.e. of the three polariza- 
tion branches, one is longitudinal and two are transverse) and the fact that each 
phonon contributes separately towards the total lattice thermal conductivity, the 
contribution due to each mode of phonons can be expressed as 

Ki = (1/6  2) .t"  o,i (hcolKB r 2) _ 1) 

q2dq + A K  (20) 

where integration is performed over the first Brillouin zone, Vg is the group velocity, 
q is the phonon wave vector, and suffix i stands for the polarisation branches. 
A K  is the correction term [1] due to the three-phonon N-processes, and reduces 
to zero in the absence of the three-phonon normal processes. The correction term 
AKhas been studied by several workers [41 - 5 0 ]  and it is found that the contribu- 
tion of A K  towards the total lattice thermal conductivity is very small [42-50]  
at low and at high temperatures in the frame of the Callaway [1 ] integral as well 
as in the frame of the generalized Callaway integral [51, 52], its contribution can 
be ignored compared to the contribution due to the first ~erm in eqn. (20). Solid 
He [41] and LiF [53], solid HD [54] are exceptions [4l, 53, 54] to this. 

Following the earlier work of Verma et al. [55], Dubey [33] used a better 
dispersion relation q = (co~v) (I + re) 2) to replace q into co in eqn. (20), where r is 
a constant and depends on the dispersion curve of the sample under study. It can 
be calculated with the help of the experimental dispersion curve. It is needed to 
be stated that the velocity of  phonons does not remain constant in the entire 
range of  the first Brillouin zone. To be more exact, the entire first Brillouin zone 

1 1 
can be divided into two ranges, 0 - ~- qmax and ~- qmax -- qmax, where qmax is the 

phonon wave vector corresponding to the zone boundary of the first Brillouin 
zone, and following Verma et al. [55] different velocities are taken in the ranges 

1 l 
0 -- ~- qmax and -~ qmax - qmax" 

Thus, the total lattice thermal conductivity can be expressed as 

X = K r + K L (2t) 

where K T and K L are the contributions due to transverse and longitudinal phonons, 
respectively, and these are given by 

O~[T 

2J K T = r~,y(1 + Rlx2T2)2(1 + 3R~x2T~)- lx~e~(e  x - 1)-2dx 

o 

02/T 

+ -  %,T(1 + R2x2T2)2(1 + 3R2x2T2) -~x%X(e  x -  1) -2dx (22) 
UT2 

0~/T 
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edT 

C f rc, L(1 + Rax2T2)~(1  + 3 R 3 x 2 T 2 ) - ~ x % ~ ( e  ~ - 1)-Zdx K L -  2VL1 
0 

0,/T 

+ ~ %,L(I + R4x2T~)2(1 + 3 R 3 x 2 T 2 ) - ~ x ~ e ~ ( e  ~ - 1)-~dx (23) 

0dl- 

('c- 1~ - 1 w h e r e  C = (KB/3n 2) ( K B T / h )  3, R = r i (gB/~)  2, i -- 1, 2, 3 a n d  4, %,i = , ~,i, , 

i =  T a n d  L, 0 i =  hogi/K~, i =  1 , 2 , 3 a n d 4 ,  r 1 a n d  r2 are  t h e  d i s p e r s i o n  

1 1 
constants for transverse phonons in the ranges 0 -  ~-qmax a n d s - q m a x -  qmax, 

respectively, r 3 and r4 are the same for longitudinal phonons, VT~ and VT2 are the 
1 1 

transverse phonon velocities in the ranges 0 - ~-qmax and ~ qmax -- qmax, re- 

spectively, VL~ and vLz are the same for longitudinal phonons, co~ and o)2 are trans- 

Table 3 

The constants and parameters used in the calculation of the lattice thermal conductivities of 
Mg2Si and Mg2Ge in the temperature range 2 - 1000 K 

Constants MgzSi Mg2Ge 

~T1 (cm/sec) 
vx2 (cm/sec) 
vrl (cm/sec) 
vr2 (cm/sec) 
01 (K) 
0 2 (K) 
0 3 (K) 
04 (K) 
o/= (K) 
r 1 (sec 2) 
r2 (see 2) 
ra (sec z) 
r4 (sect) 
"~4 (sec -1) 
T~ 1 (sec -1) 
A (sec 3) 
BTN.I (deg -m) 
BTU. r (deg -m) 
BLN.I (sec. deg-m) 
Btu, I (sec. deg -m) 
BLN, n (sec. deg -m) 
BLU, It (sec. deg -m) 
BHr (sec. deg -2) 
BnL (sec. deg-2) 

4.6 105 3.9 105 
1.4 105 1.8 105 
6.4 105 5.8 105 
5.1 105 2.4 105 

154 140 
224 210 
254 306 
392 210 
300 260 

3.250 10-2s 1.24 10-28 
6.428 10 -28 5.534 10 -2s 
1.019 10 -29 2.66 10 -28 
8.804 10 -29 6.518 10 -2~ 

5.68 106 1.7 106 
7.90 106 2.6 106 
8.0 10 -46 1.4 l0 -4~ 
1.7 10 -12 1.0 10-12 
4.61 10 -5 3.6 10 -~ 
5.0 10 -24 1.0 10 -24 
1.0 10 -22 1.0 10 -23 
5.25 10 -20 1.0 10 -22 
7.0 10 -17 3.0 10 -17 
1.2 10 -23 1.0 10 -24 
1.2 10 -23 1.0 10-24 
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1 
verse phonon frequencies corresponding to the wave vectors ~-qmax and qmax, 

respectively, co s and o9 4 are the same for longitudinal phonons, and z-1 and v-1 c ,T  c ,L  

are the combined scattering relaxation rates for transverse and longitudinal 
phonons, respectively, as stated earlier. 

Lattice thermal conductivity of Mg2Ge 

The constants relating to lhe dispersion curve are calculated with lhe help o- 
the experimental dispersion curve of Mg2Ge reported by Chung et al. [56], anp 
the values obtained are reported in Table 3. Using these constants, the tempera 
ture exponents mT, I(T ) for class I evenls for transverse phonons and mL, I(T) and 
mL, II(T) for longitudinal phonons for class I and class II  events, respectively, rio 
the three-phonon scattering relaxation rates have been calculated for Mg2Ge fn 

mA 

4~ {~  [m(Tl]euthrfe 

3 LI~:I~ [m(T)lsDv 
I ~ ,  mlT(T) 

la z 

Mg2Ge 

z, 6 8 10 
~lQ 2 ternoeroture, K 

Fig. 1. The temperature exponent mw, x(T) for class I events for transverse phonons for Mg2Ge. 
Solid line represents values of mr, I(T) used in the present analysis. Dashed line represents values 

obtained in the frame of the SDV model, while dot-dashed line shows the upper limit of 
Guthrie 

mA 

3~-j~ .-- [m(T)]Guthr,e 
[ I~ Y [m(T)]sD v Mg2Ge 
/ IV~//mlL (T) 

0 2 4 5 8 10 
• 2 temperoture, K 

Fig. 2. The temperature exponent mL, I(T) for class I events for longitudinal phonons for 
Mg2Ge. Solid line represents values of rnL, [(T) used in the present analysis. Dashed line repre- 
sents values obtained in the frame of the SDV model, while dot-dashed line shows the upper 

limit of Guthrie 
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m, [m(T)]Guthr; e 
1.0 

O.5 
0 2 

[m(T)]sD v 

Mg2Ge 

T I i I ~ I ~ I 
4 6 8 10 

xlO 2 temperature, K 

Fig. 3. The temperature exponent mL, II(T ) for class II events for longitudinal phonons for 
Mg2Ge. Solid line represents values of mL, u(T) used in the present analysis. Dot-dashed lines 

shows the value used in the SDV model as well as the upper limit of Guthrie 

the entire t empera tu re  range 2 - 1 0 0 0  K with the help o f  eqns. (8) and (9); the 

results obta ined are repor ted  in Figs 1 - 3. To  make  them more  clear, these values 

are also listed in Table  4. To have a compara t ive  study of  the tempera ture  expo- 

Table 4 

The temperature exponents mT, I(T), mL, I(T) and mL, n(T) for z3-r for Mg2Ge in the temperature 
range 2-- 1000 K. mT.I(T) for class I events for transverse phonons, rnL,~(T ) and mL.n(T) for 

class I and class II events, respectively, for longitudinal phonons 

T, K mT, I(T) mLI(T) mL, n(T ) 

1000 1.00367 1.00367 0.99908 
900 1.00453 1.00453 0.99886 
800 1.00573 1.00573 0.99856 
700 1.00748 1.00748 0.99812 
600 1.01018 1.01018 0.99745 
500 1.01465 1.01465 0.99634 
400 1.02266 1.02286 0.99430 
300 1.04050 1 .04050 0.98993 
200 1.09022 1.09022 0.99774 
100 1.34304 1.34304 0.91870 
90 1.41723 1.41723 0.90231 
80 1.51750 1.51750 0.88084 
70 1.65718 1.65718 0.85223 
60 1.85898 1.85898 0.81357 
50 2.16394 2.16394 0.76107 
40 2.65269 2.65269 0.69115 
30 3.50638 3.0 0.60578 
20 4.0 3.0 0.52755 
10 4.0 3.0 0.50028 
8 4.0 3.0 0.50002 
6 4.0 3.0 0.5 
4 4.0 3.0 0.5 
2 4.0 3.0 0.5 
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nents used in the present analysis with those of the earlier workers, the tempera- 
ture exponents have been calculated in the frame of the Sh a r ma -  D u b e y -  Verma 
(SDV) model [4, 5], and the results obtained are reported in Figs 1 -  3, together 
with re(T) used in the present analysis. The upper limits of rn(T) found by Guthrie 
[31 ] have been calculated in the entire temperature range of study, and the results 
obtained arc shown in Figs 1 -  3. 

Following the work of the earlier workers, and considering that at lowest tem- 
perature the entire lattice thermal resistivity of the sample under study is due 

MgzGe 

'~ 10 - 

u 

? 

l 

i0 q 

10-z , I r q l ,,,. 
I ]0 ]0 2 10 3 

T e m p e r a t u r e ,  K 

Fig. 4. Total lattice thermal conductivity of Mg2Ge in the temperature range 2-- 1000 K. Solid 
line shows calculated values, and circles are experimental points 

mainly to boundary scattering, the Casimir length [38] of the sample has been 
calculated at 2 K;  hence, the boundary scattering relaxation rates -1 and -1 TB, T TB, L 

for transverse and longitudinal phonons, respectively, are calculated at 2 K. The 
values of  these two constants are found to be the same as obtained by Dubey [57, 
58 ]. The point-defect scattering strength A has been adjusted at 8 K, ignoring the 
contribution due to the three-phonon scattering relaxation rate. The value obtained 
is the same as reported by Dubey [58, 59] and by Martin [59]. 

-1 while -1 -1 dominates over T3ph, U ,  l:3ph, U AS we know, at low temperatures T3ph, N 

dominates over "c3ph, N - i  at high temperatures. Following the earlier work of Dubey 
[33] and considering the fact stated above, approximate values of constants 
BTN, I , BLN, I and BLN,I I have been calculated at 20 K, ignoring the contribution 

-1 with the help of the experimental values of the lattice thermal con- due to T3ph, U ,  

ductivity, while the approximate values of the constants BTU d, BLU, I and BLU, I I 
-1 The values of  are estimated at 200 K, neglecting the contribution due to %pn,N. 

these constants have been further corrected at 100 K, considering the contributions 
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of z3ph, -1 N and of Z3ph, -~ u .  The constants BHT and BHL related to the four-phonon 
scattering strength are calculated at 500 K with the help of the numerical integra- 
tion of the conductivity integrals. The values of these constants, as obtained above, 
are listed in Table 3. The experimental data on the lattice thermal conductivity of 
Mg2Ge for the theoretical verification are taken from the earlier report of 
Martin [59]. 

Using the constants reported in Table 3, the total lattice thermal conductivity 
of Mg2Ge has been calculated in the entire temperature range 2-1000 K by 

10C 

8C 

6c 
o 

.c 

tA 

MgzGe 
~ T 

I" \ , 
I 

�9 I 

- 'd I '  d 

- ~ q 
�9 I ~ 

. . . . . .  J ,,, / "~ 

~11 ~. ~ 
I r I " ~  . . . . . . .  ~ ,,. 

10 10 z 10 3 

Temperature, K 

Fig. 5. The percentage contributions ~ K T and ~ KL towards the total lattice thermal con- 
ductivity of Mg2Ge due to transverse and~longitudinal phonons, respectively. Dashed and 

dot-clashed lines represent ~ K T and ~ KL, respectively 

estimating the separate contributions K T due to transverse, and K L due to longi- 
tudinal phonons, with the help of the numerical integration of the conductivity 
integrals in eqns. (22) and (23), respectively, and the results obtained are shown in 
Fig. 4. The separate percentage contribution ~ K T and ~ K L due to transverse 
and longitudinal phonons, respectively, towards the total lattice thermal con- 
ductivity have been analysed in the entire temperature range 2-1000 K, and the 
results obtained are reported in Fig. 5. 

To analyse the roles of three-phonon N- and U-processes, the percentage 
contributions of z~h, N and z3~b, u towards the three-phonon scattering relaxation 
rate "c~r have been studied for class I events for transverse phonons, and for 
class I and class II events for longitudinal phonons for Mg2Ge in the entire tem- 
perature range 2 -  1000 K, and the results obtained are illustrated in Figs 6 -  8. 
The percentage contributions of "c -1 for class I events for transverse phonons, 3ph, T 

and r-1 (class I + class II) for longitudinal phonons, towards the combined 3ph, L 
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Fig. 6. The percentage contributions o -1 o -1 -1 % T3ph, N and % ~3vh, U processes towards the T3vr~T 
for class I events for transverse phonons  for Mg2Ge in the temperature range 2-- 1000 K. 

Solid and  dashed lines represent % T~xn tr and ~ -1 , % T3ph, N, respectively 
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Fig. 7. The percentage contributions ~ Tsph, ~ - 1  and %o ~3vh.U-1 towards ~-X3vh.L for class I event 
for  longitudinal phonons  for Mg~Ge in the temperature range 2-- 1000 K. Solid and dashed 

lines represent % ~ , u  and % T3ph, N , - x  respectively 
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Fig. 8. The percentage contributions o -i  -1 ~-1 ~oo 2"3ph. N and % r3oh, u towards 3ph, L for class II 
events for Mg2Ge in the temperature range 2--1000 K. Solid and dashed lines represent 

% -1 and o -1 T3oh.u % ~aph.N, respectively 

scattering relaxation rates of  the respective modes z -1 and z-1 c,T c, L are calculated for 
1 1 3 

the four different values of  the phonon frequency co = ~- com~x, ~- comax ~- comax and 

comax, in the absence of the four-phonon scattering processes; the results obtained 
are reported in Tables 5 and 6. 

Lattice thermal conductivity of Mg~Si 

The experimental data on the lattice thermal conductivity of  MgeSi for the 
theoretical analysis are taken f rom the earlier report of  Martin [59]. The con- 
stan(s relating to the dispersion curve are calculated with the help of  the experi- 
mental dispersion curve reported by Whitten et al. [60], and the values obtained 
are listed in Table 3. Using these constants, the temperature exponents mT, I(T ) 
for class I events for transverse phonons, and mL, I(T ) and mL, n(T ) for class I 
and class I] events, respectively, for longitudinal phonons, have been calculated 
with the help of  Eqs (8) and (9) similarly as for Mg2Ge, in the entire tempera- 
ture range 2 - 1 0 0 0  K, and the results obtained are listed in Table 7. The values of  
re(T) used in the SDV model [4, 5] and the upper limits of  Guthrie [31] have also 
been estimated, and the results are shown in Figs 9 - 1 1 ,  together with m(T) 
used in the present analysis. 
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Table 5 

The percentage contr ibut ion of the three-phonon scattering relaxation r a t e  "g~I,T towards the 
combined scattering relaxation rate ~ ,~  due to transverse phonons  for Mg2Ge due to class I 
events in the absence of the four-pbonon processes for four different values of the p h o n o n  

frequencies. r represents the maximum frequency of transverse phonons  

~ K  I l 3 
~ r  ~ = - -  W m a x  ~ r  m = - -  m m a x  ~ r  m = ~ -  m m a x  f o r  ~ = m m a x  

4 2 

1000 99.98 99.87 99.57 98.98 
900 99.98 99.85 99.51 98.85 
800 99.97 99.83 99.43 98.67 
700 99.97 99.80 99.33 98.43 
600 99.96 99.75 99.18 98.09 
500 99.95 99.68 98.96 97.57 
400 99.94 99.57 98.59 96.73 
300 99.91 99.36 97.89 95.15 
200 99.84 98,86 96.26 91.58 
100 99.63 97.26 91.35 81.68 

90 99.59 96.99 90.56 80.19 
80 99.55 96.72 89.77 78.75 
70 99.52 96.48 89.08 77.49 
60 99.50 96,31 88.60 76.64 
50 99.49 96.27 88.47 76.41 
40 99.50 96.34 88.67 76.37 
30 99.49 96.25 88.41 76.30 
20 73.39 26.53 9.69 4.33 
10 0.20 0.02 0.0l 0 

8 0.08 0.01 0 0 
6 0.02 0 0 0 
4 0 0 0 0 
2 0 0 0 0 

m~ 

" - • !  [m(T)]Guthrie 

- ~ ,  [m(T)]su v Mg2bl 

\ ~ , ~ j /  mlT(T ) 

2- 4 6 8 10 

x~0 2 temperature, K 

Fig. 9. The temperature exponent mr.r(T) for class I events for transverse phonons  for Mg~Si. 
Solid line represents values of mr,~(T) used in the present analysis. Dashed~line represents 
values obtained in the frame of the SDV model, while dot-dashed line shows the upper limit 

of Guthrie  
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Table 6 

The percentage contr ibut ion of the three-phonon scattering relaxation ra te  Z'~ol, L towards the 
combined scattering relaxation rate r ~ [  for MgzGe due to the combined effect of class I and 
class II  events in the absence of four-phonon processes for four different values of the phonon 

frequency. COma x represents the maximum frequency of longitudinal phonons  

T,K 

~1 : - -1  o --1 o --1 o --1 
o 3ph, L % ~3ph, L ~o'C3ph, L ~ %'3ph, L 

1 t 3 
f o r  o ~ ~ -  Oma• f o r  ~o = ~ -  t0max f o r  ~ = - -  Omax f o r  ~ = Ornax 

4 

1000 100 99.98 99.97 99.95 
900 I00 99.98 99.97 99.95 
800 100 99.98 99.96 99.94 
700 100 99.98 99.96 99.93 
600 100 99.97 99.95 99.91 
500 100 99.96 99.93 99.88 
400 99.98 99.95 99.90 99.83 
300 99.98 99.92 99.83 99.70 
200 99,95 99.81 99.59 99.28 
100 99.54 98,29 96.26 93.54 
90 99.27 97.32 94.20 90.14 
80 98.74 95.41 90.26 83.91 
70 97.48 91.14 82.10 72.08 
60 93.99 80.51 64.90 51.00 
50 82.23 55.07 35.35 23.53 
40 45.88 18.34 9.10 5.34 
30 8.85 2.51 1.13 0.64 
20 1.23 0.33 0,15 0.08 
10 0.18 0.05 0.022 0.01 

8 0.11 0.03 0.01 0 
6 0.06 0,02 0 0 
4 0.04 0 0 0 
2 0.02 0 0 0 

I-ll, i Cm'T'lGu hr,  
~ U  Mg~s, 

2 4 6 8 10 
xlO 2 temperature, K 

]Fig. 10. The temperature exponent m L . I ( T  ) for class I events for longitudinal  phonons  fo 
Mg2Si. Solid line represents values of rnL,~(T ) used in the present analysis. Dashed line repre 
sents values obtained in the frame of the SDV model, while dot-dashed line shows the upper 

limit of Guthr ie  
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Table 7 

The temperature exponents m-r,i(T), mL3(T) and mt, n(T) for ~ forMg~Si in the temperature 
range 2-- 1000 K. mT, I(T) for class I events for transverse phonons,  mLI(T) and rnL, r~(T) for 

class I and class II  events, respectively, for longitudinal phonons  

T, K mT, I(T) mL, I(T) mL, n(T) 

I000 1.00417 1.01277 0.99681 
900 1.00515 1.01575 0.99606 
800 1.00652 1.01992 0.99503 
700 1.00851 1.02599 0.99352 
600 1.01158 1.03531 ~99121 
500 1.01666 1.05070 0.98742 
400 1.02599 ~07878 0.98053 
300 1.04603 1.13839 0.96612 
200 1.10241 1.30134 &82810 
100 1.38687 2.03935 0.78167 

90 1.46972 2.23440 0.74993 
80 1.58129 2.48676 0.71360 
70 1.73598 2.82078 0.67090 
60 1.95812 3.0 0.62475 
50 2.29135 3.0 0.57780 
40 2.82078 3.0 0.53641 
30 2.73760 3.0 0.50950 
20 4.0 3.0 0.50054 
10 4.0 3.0 0.5 

8 4.0 3.0 0.5 
6 4.0 3.0 0.5 
4 4.0 3.0 0.5 
2 4.0 3.0 0.5 

mA 

10 
[m(T)]euth~,e [m(T)]sDv 

Mg2Si f 
2 

0.5 t I r : i I . ~  
0 z, 6 8 IO 

• 2 t e m p e r a t u r e ,  K, 

Fig. 11. The temperature exponent mL.H(T) for class II events for longitudinal phonons  for 
MgzSi. Solid line represents values of me, n(T) used in the present analysis. Dot-dashed line 

shows values used in the SDV model as well as the upper limit of Guthr ie  
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-1 and . [ -1 f o r  transverse and The boundary scattering relaxation rates ~B,T B,r 
longitudinal phonons, respectively, and the point-defect scattering strength A have 
been calculated at 2 and 8 K, respectively, similarly as for Mg~Ge, and the values 
obtained are the same as obtained by Dubey [58, 61]. The constants relating to 
three-phonon and four-phonon scattering strengths have been estimated at different 
temperatures as stated in the earlier section for Mg2Ge, and the values obtained 
are listed in Table 3. 

Using the constants reported in Table 3, the total lattice thermal conductivity 
of Mg2Si has been calculated in the entire temperature range 2-1000  K by 
estimating the contributions K T and K L separately with the help of the numerical 

Mg2$~ 

'~ 10 
x3 

t) 

I ~ I , I 
10 10 ~ 10 3 

Temperature, K 

Fig. 12. Total lattice thermal conductivity of Mg~Si in the temperature range 2-- 1000 K. Solid 
line shows calculated values, and circles are experimental points 

integration of eqns. (22) and (23), and the results obtained are shown in Fig. 12. 
To study the relative contribution of each mode, the percentage contributions 
~o KT and ~ K L towards the total lattice thermal conductivity of Mg2Si have 
been analysed in the temperature range 2-1000  K, and the results obtained are 
illustrated in Fig. 13. 

To study the relative roles of three-phonon N and U-processes, the percentage 
contributions 9/o z3ph, -~ ~ and 9/oo z3ph,-1 u towards the three-phonon scattering relaxa- 
tion rate Zfp~a have been analysed for class I events for transverse phonons and 
class I and class II events for longitudinal phonons, similarly as for Mg~Ge, and 
the results obtained are shown in Figs 14- I6 .  To see the importance of  z~pl h 
in the estimation of the lattice thermal conductivity, the percentage contributions 
of z -1 of class I events for transverse phonons and T3ph, L 3ph, T --1 (class I + class II) 
for longitudinal phonons towards the combined scattering relaxation rates ~-~ 

c, T 
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Fig.  13. The percentage contributions % K T and % K L towards the total lattice thermal con- 
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Fig. 15. The percentage contributions % T3ph ,-1 I~ and % T3ph ,-1 u towards T3ph ,-1 L for class I event 
for longitudinal phonons for Mg2Si in the temperature range 2-- 1000 K. Solid and dashed 

lines represent % v ~ , u  and r ~ , N ,  respectively 
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Table 8 

The percentage contribution of the three-phonon scattering relaxation rate Z~I~.T towards the 
combined scattering relaxation rate T~.IT due to transverse phonons for Mgg_Si due to class I 
events in the absence of four-phonon processes for four different values of the phonon fre- 

quency. Ogma x represents the maximum frequency of transverse phonons 

T , K  
% 3N1, T ~ 3ph, T ~ 3Ph, T % ' C ~ I , T  

1 1 3 
for  o = - -  e~max fo r  o) ~ - -  e0max for  ro ~ ~ -  Omax for  o) = max 

4 2 

1000 100 100 99.97 99.94 
900 100 100 99.97 99.93 
800 100 99.98 99.96 99.92 
700 100 99.98 99.96 99.90 
600 100 99.98 99.95 99.88 
500 100 99.97 99.93 99.85 
400 99.98 99.97 99.91 99.80 
300 99.98 99.95 99.86 99.69 
200 99.96 99.91 99.75 99.42 
100 99.92 99.78 99.36 98.52 

90 99.91 99.76 99.28 98.36 
80 99.90 99.73 99.21 98.19 
70 99.89 99.71 99.14 98.02 
60 99.88 99.69 99.07 97.88 
50 99.87 99.67 99.02 97.77 
40 99.87 99.65 98.96 97.63 
30 99.84 99.58 98.75 97.15 
20 69.87 46.49 22.37 11.04 
10 1.53 0.58 0.19 0.08 
8 0.63 0.23 0.07 0.03 
6 C.20 0.07 0.02 0.01 
4 0.03 0.01 0 9 
2 0 0 0 0 

and %,L-1 of  the  respect ive modes  have been s tudied for  the  four  different values 
1 1 3 

o f  the p h o n o n  frequency e) --- ~- COma x, ~- O)max, ~-  COm~x and e)ma x in the  absence 

o f  f o u r - p h o n o n  processes ;  the  results  ob ta ined  are  l isted in Tables 8 and 9. 

Comparative investigation of the present study with the previous study 

To see the  value o f  the present  s tudy,  it is needed to make  a compara t ive  s tudy 
o f  the  present  analysis  with the previous  studies, and  the present  section is con- 
cerned with this. Mar ( in  [59] s tudied the  lat t ice the rmal  conduct ivi t ies  of  Mg2Ge 
and  MgzSi in the  t empera tu re  range 4 -  700 K in the  f rame of  the  two-mode  con-  
duc t ion  o f  phonons  p roposed  by  Ho l l and  [2]. F r o m  Tables 1 and 2, it is clear tha t  
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Table 9 

The percentage contribution of the three-phonon scattering rate ~ , L  towards the combined 
scattering relaxation rate ~:~,~ for Mg~Si due to longitudinal phonons due to the combined 
effect of class I and class II events in the absence of four-phonon processes for four different 
values of the phonon frequency, co,nax represents the maximum frequency of longitudinal 

phonons 

T,K 
Z%~,L o --' o --~ o --~ 

~oo "C3ph, L ~/00 ~3Ph, L ~ T3Ph, L 

I 1 3 
f o r  o = ~ -  Omax f o r  <o = ~ -  tOrnax f o r  ~ = - -  omax f o r  o ~ ~0max 

4 

1000 100 100 100 100 
900 100 100 100 100 
800 100 100 100 100 
700 100 100 100 100 
600 100 100 100 100 
500 100 100 100 99.98 
400 100 100 99.98 99.98 
300 100 100 99.98 99.96 
200 100 99.97 99.94 99,90 
100 99.86 99.58 99.08 98,39 
90 99.75 99.28 98.43 97.25 
80 99.54 98.63 97.04 94.87 
70 99.04 97.18 93.98 89,80 
60 97.80 93.68 87.03 79,11 
50 94.01 83.97 70.33 57.22 
40 84.55 64.611 45.24 31.79 
30 71.46 45.51 27.43 17.58 
20 60.50 33.81 18.78 11.54 
10 48.76 24.09 12.56 7.49 
8 45.67 21.89 11.25 6.68 
6 41.91 19.40 9.82 5.79 
4 36.95 16.35 8.12 4.75 
2 29.25 12.11 5.87 3.40 

(in the  f r ame  o f  the  H o l l a n d  model )  Mar t i n  [59] could  not  consider  the  cont r ibu-  

1 
t ion  of  t h ree -phonon  N-processes  in the  range  ~-qmax - qraax and th ree -phonon  

1 
U-processes  in the  range  0 - ~-  qmax in the  ca lcula t ion  o f  the  lat t ice the rmal  con- 

duc t iv i ty  KT due  to t ransverse  phonons .  A t  the  same time, it is also clear  tha t  
he could  no t  consider  the  con t r ibu t ion  o f  the  th ree -phonon  U-processes  in the  
ent i re  range  o f  the  Br i l louin  zone 0 - q~,x in the  ca lcula t ion  o f  the  lat t ice thermal  
conduc t iv i ty  K L due  to  long i tud ina l  phonons .  Thus,  it  can be  said tha t  Mar t i n  [59] 
used on ly  one process  (either N-  or  U-process)  in the  ca lcula t ion  o f  the  la t t i ce  
t h e r m a l  conduct ivi t ies  o f  Mg2Ge and MgzSi.  F r o m  Tables  1 and  2, it  is also clear 
t ha t  (in the  f r ame  o f  the  H o l l a n d  [2] model )  Mar t i n  [59] used the  Her r ing  [11] 
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relations -1 ~-1 z3ph, T oc o)T 4 and 3ph, L OC o)vT a for three-phonon N-processes in the 
entire temperature range of study, which are valid at low temperatures only. 

Misho and Dubey [62] calculated the lattice thermal conductivities of Mg2Ge 
and Mg2Si in the temperature range 4 -  1000 K in the frame of the expression for 
z;) h proposed by Joshi and Verma [3 ]. From Tables 1 and 2, it is clear that (in 
the frame of Joshi and Yerma [3 ]) they could not consider the contribution of  
three-phonon U-processes. At the same time, they used discrete values of the 
temperature exponent re(T) in place of a continuous value. However, they tried 
to use the Guthrie [31] expression for the temperature exponent rn(T). 

The lattice thermal conductivities of Mg2Ge and Mg~Si were studied by Dubey 
[57, 58 ] in the temperature range 4 -  800 K in the frame of the Sharma-  Dubey - 
Verma (SDV) model [4, 5]. From Tables 1 and 2, it is clear that Dubey [58, 59] 
(in the frame of the SDV model [4, 5]) ignored the contribution of the three- 
phonon N-processes in the calculation of the lattice thermal conductivity in the 
entire temperature range. At the same time the expression (see Eqs 5, 6 and 22 
of ref. 4) for the temperature exponent re(T) used in the SDV model [4, 5] contains 
an empirical factor (1 + O/aT). However, it must be stated that Dubey [57, 58~ 
was the first to use a continuous value of the temperature exponent re(T) in the 
analysis of the lattice thermal conductivities of MgGe and of Mg2Si. 

With the help of Eqs (8) and (9), it is clear that in the present analysis of the 
lattice thermal conductivities of Mg2Ge and Mg~Si, the Guthrie [31] expression 
for the temperature exponent re(T) for z ~  has been incorporated without any 
empirical factor. At the same time, the contributions due to three-phonon N and 
U-processes are included in the entire temperature range 2 - 1000 K for transverse 
and longitudinal phonons. The expression for -c;-plh used in the present analysis is 
based on the Guthrie [31] classification of class I and class II events. At the same 
time, it is also based on the N- and U-processes. The role of the four-phonon 
processes is included in the present study. It is interesting to note that the role o f  
the three-phonon scattering relaxation rate has been reported in more detail in 
the present work. 

Results and discussion 

First of all, we shall discuss the three-phonon scattering relaxation rate and its 
temperature exponents. The temperature exponents mT, I(T), mL, I(T) and mL, ix(T)' 
used in the present analysis can be studied with the help of Tables 4 and 7 for 
Mg2Ge and Mg2Si, respectively, while their continuous nature can be seen with 
the help of Figs 1 - 3 and Figs 9 -11  for Mg2Ge and Mg2Si, respectively. With 
the help of these Tables and Figures, it can be seen that at high temperatures 
mT, I(T), mL,~(T ) and mL, n(T) tend to unity. As a result, at high temperatures 
(e -~ ~ 1 due to the large value of T) the expression used for *;)h reduces to 
- 1  3ph oc T, which is similar to the earlier findings of Herring [11 ]. At the same 
time, it also results in K oc 1/T at high temperatures, which is similar to the pre- 
vious findings. At low temperatures, mT.I(T) and rnL, i(T ) tend to 4 and 3, respec- 
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tively, which are the same as reported by Herring [11 ]. Through the numerical 
analysis of the conductivity integrals for KL, it is found that at low temperatures 
the scattering relaxation rate due to class II events is much smaller compared to 
the same due to class I events. At the same time, due to the low value of T, the 
factor e -~ is negligibly small. Thus, the expression for ~1  h used in the present 
analysis reduces to "cTo~ oc a)T ~ for transverse phonons and z ~  h oc a)2T ~ for 
longitudinal phonons, which are similar to the earlier findings of Herring [11 ]. 
From these Figures, it is also clear that the values of re(T) used in the calculation 
of the lattice thermal conductivities of MgzGe and MgzSi lie in the range 1 - 4  
for transverse phonons and 1 - 3  for longitudinal phonons in the entire tempera- 
ture range 2-1000 K, and the upper limit of Guthrie [31] is not exceeded at any 
temperature. Thus, they are free from the Guthrie comments [32] too. Therefore, 
it can be said that the values of rn(T) used in the present analysis of the lattice 
thermal conductivities of Mg2Ge and MgzSi are more realistic than those used 
by earlier workers [57, 58, 61, 62]. 

With the help of Figs 4 and 12, it can be seen that the agreement between the 
calculated and experimental values of the lattice thermal conductivity is very good 
in the entire temperature range 2-1000 O for both MgzGe and MgzSi. Thus, 
one can say that the expression used for z3r gives a good response to the experi- 
mental data on the lattice thermal conductivity at low and at high temperatures. 
In other words, it can be said that the experimental data on the lattice thermal 
conductivity of a sample can be explained well in the frame of the expression for 
%-01 proposed by Dubey [33]. 

The relative contributions of transverse and longitudinal phonons towards the 
total lattice thermal conductivities of Mg~Ge and Mg2Si can be studied with the 
help of Figs 5 and 13, respectively. From these two Figures, it can be seen that 
at high temperatures the percentage contribution ~ K T due to transverse phonons 
dominates over ~ K L. In other words, one can say that at high temperature most 
of the heat is carried by transverse phonons, which is similar to the findings of 
the previous workers [2-  7, 63 - 65] based on the relaxation time approach [2-  7] 
and on the variational method [63- 65]. From these two Figures, it is clear that 
at low temperatures ~ K T is larger than ~o KL, which can be understood as fol- 
lows. At very low temperatures, the lattice thermal resistivity is mainly due to 
the boundary scattering and the lattice specific heat oc T 3. As a result, the ratio 
% KT/% KL depends upon the factor 

2(VL = 2(VL/VT) ~. 

Thus, the percentage contribution ~ K T due to transverse phonons dominates 
over ~ K L at low temperature too, which is similar to the results reported by 
previous workers [55]. At a little higher temperature towards the conductivity 
maxima, ~ K T begins to decrease with increasing temperature and, after attain- 
ing a minimum value (say 3.2 for Mg2Ge and 3.5 for Mg2Si), at a certain tempera- 
ture (say 30 K for Mg2Ge and 30 K for Mg2Si ) it begins to increase again. The 
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reverse nature is also true for longitudinal phonons. The nature of such variation 
can be explained by considering the role of  the point-defect scattering (see ref. 55). 
These results are similar to those obtained by Sharma et al. [55], for Ge on the 
basis of the Holland [2] model. At the same time, it is also similar to those 
obtained by Dubey [58] for Mg2Ge in the frame of the SDV model [4, 5]. 

The relative importance of three-phonon N- and U-processes in the calculation 
of the lattice thermal conductivities of  Mg~Ge and Mg2Si can be studied with 
the help of Figs 6 - 8  and 14-16,  respectively. From these Figures, it is clear 

-1 for both transverse and that at low temperature ~--~3ph, N dominates over -c3ph, v 
longitudinal phonons and also in both class I and class; II events. At, the same 

-1 As a time, it can be seen that at high temperatures z-~3ph, u dominates over z3ph, N. 
result, one can say that at low temperature three-phonon N-processes play a 
dominating role in the estimation of the lattice thermal conductivity of both 
samples, whereas at high temperatures the lattice thermal resistivity is mainly 
due to three-phonon U-processes. These findings are in agreement with the findings 
of the earlier workers [4, 5, 33]. 

The importance ofthree-phonon scattering relaxation rates Z3~h,T (class I) and 
z3ph,-1 L (Class I + class II) can be studied with the help, of Tables 5, 6 and 8, 9 
for Mg2Ge and Mg2Si, respectively, which show the percentage contributions 

z3ph,-1 T and ~ z3ph,-1 L towards the combined scattering relaxation rates z-lc, T and 
z -z respectively, in the absence of the four-phonon scattering relaxation rate c,L,  
z~-p~h. It should be noted that in these Tables, in some places, the contributions are 
reported as zero. In fact, these are not zero, but a very small quantity. Similarly, 
in some places we have reported the percentage contributions as 100; these are 
not 100, but very close to 100. From these Tables, it is clear that at high tempera- 
tures z~p~ dominates over the point-defect and boundary scattering relaxation 
rates. As a result, it can be  said that at high temperatures the lattice thermal 
resistivity of a sample is mainly due to phonon-phonon scattering, which is similar 
to the earlier findings of Mamilton and Parrott [63] based on the variational 
method. At the same time, it is similar to those reported by Dubey [33, 66] for 
Si and Ge based on the relaxation time approach. From these Tables, it can be 
seen that at low temperatures (say below 15 K) the percentage contribution 
~o Z~h due to the three-phonon scattering relaxation rate is very small, which 
shows the domination of ZB ! and zp~ 1 over Z~h at low temperatures. Due to these 
results, one can say that at low temperatures the 1attica thermal resistivity of a 
sample is mainly due to boundary and point-defect scattering relaxation rates, 
which is in agreement with the previous findings [38-40, 55]. 

The  a u t h o r s  wish  to express  their  t h a n k s  to Dr .  R.  H. Mi sho  for  his  va luable  sugges t ions .  
T h e y  are  a lso gra tefu l  to Dr .  A. J. Saleh a n d  Dr.  R.  A. R a s h i d  for  their  interest  in the  p resen t  

work.  
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ZUSAMMENFASSUNG - -  Die thermischen Gitterleitf/ihigkeiten von Mg2Ge und Mg~Si wurden 
im ganzen Temperaturbereich yon 2 bis 1000 K im Rahmen eines neuen Ausdrucks ffir die 
Relaxationsrate der Phonon-Phonon  Streuung analysiert, welche von Dubey als 

D -0/~T,~ [ -~ '/,rrlli(T) "C~ 1 = (BN, I "4- Bu, Ie-~ mI(T) + (BN, II + ~u, ii e )gtcoj 1 

vorgeschlagen wird, undzwar auf der Guthrie-schen Klassifizierung der Phonon-Phonon  
Streuung beruhend. Auf  diese Weise wurde eine sehr gute Llbereinstimmnng zwischen den 
berechneten und experimentellen Werten der thermischen Gitterleitf~ihigkeit ftir beide Proben 
im ganzen Temperaturbereich der Untersuchungen erhalten. Die separaten prozentualen Bei- 
tr~ige, welche den Drei -Phonon Normal-  und Umklapp-Prozessen in Richtung der Relaxations- 
rate der Drei-Phonon-Streuung zuzuschreiben sind, wurden ebenfalls studiert. Die Rolle der 
Vier-Phonon-Vorg~nge wurde in die vorliegende Analyse ebenfalls mit aufgenommen. 

PearoMe - -  ~ n n  coe~i~menm~ MgeGe ri Mg~Si B o6~acTrI TeMnepaTyp 2--1000 K npoBe~ea aaaa~3 
pemeTom~o~ TeIIYloIIpOBO~IIOCTI~ Ha OCHoBe ~OBOFO sb ipa~em~ ~aa CKOpOCTa pe~aKcaIIrm 
dgoaoH-dpo~onHoro pacceaHr~, npe~i~oxeHHoro ~t ,m6a r~ OCHOBaH~oro Ha KJ~accr~m~amaa 
FtoTprI ~Iaa qboHori-dpotiomIoro pacceaman: 

T~ 1 = (BN, I -}- Bud e-0/sT)B((-O) Tml(T) -t- (BN, n q- Bu, n e)-O/~TO(oJ) TmII(T) 

Hoz~y~eNo xopomee COBna~em~e MeeKly BbIKttcJIettHbIMI,I I~ 3~cr~ep~Mearam,m, iMr~ 3na~ennSMN 
pemeTo~o~  TenaorrpoBo~aocT~ ZKJt~ o6or~x o6pa3~oB. Or~easao  ~3y~er~ npo~enTaSfft sK~a~I, 
BHOCmVmL~ Tpexqbo~oarmircm ~opMa:~bn~M~ I~pot~eccaMr~ ~ apo~eccaM~ nepe6poca B pe~aKca- 
~p~ormym cKopocT~, Tpexr paccez~rm. B npe~IcrasaenaoM ana~HBe ~Ka~o~eHa TaK~e 
pozm ~eT~,~pex~bonormr, tx rrpoaeccos. 
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